The Health and Related Economic Benefits of Attaining Healthful Air in the San Joaquin Valley

Jane Vise Hall and Victor Brajer
The Institute for Economic and Environmental Studies
California State University, Fullerton

Frederick W. Lurmann
Sonoma Technology, Inc.

2006 San Joaquin Valley Air Quality Symposium
December 6, Bakersfield, California
Study Objectives

- Determine who is exposed to poor air quality and how frequently.
- Quantify known adverse health effects that result from exposure.
- Assess the economic value of meeting health-based air quality standards.
Research Approach

• Closely integrated multidisciplinary research.

• Three essential elements:
 – Exposure
 – Health
 – Economics
Research Approach Schematic

Air Quality

Population

Exposures (REHEX)

Response Functions

Symptoms (SYMVAL)

Economic Data

Economic Valuation (SYMVAL)
Exposure

- Integrates air quality, spatial and demographic data.
- Represents who is exposed as well as frequency of exposure.
- Supports estimation of adverse health effects associated with exposure.
Adverse Health Effects

Include effects that:

- Are well established in the health literature.
- Are associated with ozone or PM$_{2.5}$.
- Can be quantified in economic terms.
• Attaches dollar values to adverse health effects resulting from exposure.
• Provides an easily understood measure of the cost of poor air quality.
• Is not the entire picture: equity.
Ozone-related:

- Respiratory-related hospital admissions.
- Emergency room visits.
- School absences.
- Asthma attacks.
- Days of restricted activity.
Health Endpoints

PM$_{2.5}$-related:

- Premature death (mortality).
- Acute bronchitis, children.
- Chronic bronchitis, adults.
- Work loss days.
- Days of restricted activity.
- Upper and lower respiratory symptoms, children.
- Non-fatal heart attacks.
- Respiratory and cardio hospital admissions.
- Children’s asthma ER-related visits.
Other Health Endpoints

- Ozone-related mortality.
- Neonatal PM-related mortality.
- Loss of lung function.
- Asthma hospital admissions.
- Adult asthma ER visits.
Scope of the Results

- Expected reduction in exposure by attaining the federal (and state) air quality standards.
- Expected improvements in health.
- Economic value gained from fewer adverse health effects.
Health Studies Criteria

• Are peer-reviewed.
• Account for potential confounders.
• Are based on similar populations.
• Are more recent, using more advanced analytical methods.
• Cover longer periods and larger populations.
• Have been used in previous peer-reviewed benefits assessments.
\[\Delta C = -C_0 (e^{\beta \Delta P} - 1) \]

where:

- \(\Delta C \) = the change in the number of cases
- \(C_0 \) = the number of baseline cases
- \(\Delta P \) = the change in ambient pollution concentrations
- \(\beta \) = an exponential “slope” factor derived from the health literature

and

\[\beta = \frac{(1 + \text{ Increased Odds})}{(\text{ Pollution})} \]
PM Mortality Studies Used

Pope et al. (2002)
- Large scale, longitudinal cohort study.
- 16-year follow up from 1979-1983.
- 61 U.S. cities, ages 30 and older.
- Controls for lifestyle and occupation.
- Increase in all-cause mortality: 6% per 10 ug/m³.

Jerret et al. (2005)
- Based on LA subset of Pope study.
- Controls for same confounders.
- Better represents LA population.
- Finds greater association between traffic and health effects.
- Increase in all-cause mortality: 17% per 10 ug/m³.
Economic Values

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>New case of chronic bronchitis</td>
<td>$374,000</td>
</tr>
<tr>
<td>Hospitalization</td>
<td>$32,000</td>
</tr>
<tr>
<td>MRAD</td>
<td>$61</td>
</tr>
<tr>
<td>Work loss day</td>
<td>$123-141</td>
</tr>
<tr>
<td>School absence</td>
<td>$65-79</td>
</tr>
<tr>
<td>Respiratory symptom day</td>
<td>$20-32</td>
</tr>
<tr>
<td>Acute bronchitis</td>
<td>$110</td>
</tr>
<tr>
<td>Asthma attack</td>
<td>$50</td>
</tr>
<tr>
<td>Emergency room visit</td>
<td>$325</td>
</tr>
</tbody>
</table>
Value of a Statistical Life

One VSL = $6,700,000

Consider this example:

- 1,000,000 people are at risk.
- Risk is reduced for each by 1/100,000 a year.
- Each values that reduction at $670, which totals $670,000,000.
- Ten lives are saved: valued at $6,700,000 each.
NAAQS Results – Annually

2004 Population

- 460 fewer premature deaths.
- 325 fewer new cases of chronic bronchitis.
- 334,000 fewer days of reduced activity in adults.
- 345 fewer hospital admissions.
- 23,300 fewer asthma attacks.
- 188,000 fewer days of school absence.
- 3,230 fewer cases of acute bronchitis in children.
- 68,680 fewer work loss days.
- 595 fewer non-fatal heart attacks
- 445 fewer children’s asthma ER visits
- Over 382,000 fewer days of respiratory symptoms in children.
Total Value

- $3.3 billion *per year*
- $1,000 per Valley resident *per year*
- Attaining California AQ standards would double the benefits
CAAQS Results

- 880 fewer premature deaths.
- 610 fewer new cases of chronic bronchitis.
- 322,400 fewer days of reduced activity in adults.
- 42,700 fewer asthma attacks.
- 262,600 fewer days of school absence.
- 5,920 fewer cases of acute bronchitis in children.
- Total Value: over $6 billion
- Nearly $2,000 per person per year
<table>
<thead>
<tr>
<th>Adverse Health Effect</th>
<th>NAAQS</th>
<th>CAAQS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Premature deaths</td>
<td>460</td>
<td>880</td>
</tr>
<tr>
<td>Chronic bronchitis</td>
<td>325</td>
<td>610</td>
</tr>
<tr>
<td>Hospital admissions</td>
<td>865</td>
<td>1,635</td>
</tr>
<tr>
<td>Asthma attacks</td>
<td>23,300</td>
<td>42,700</td>
</tr>
<tr>
<td>Days of school absence</td>
<td>188,000</td>
<td>262,600</td>
</tr>
<tr>
<td>Children’s acute bronchitis</td>
<td>3,230</td>
<td>5,920</td>
</tr>
</tbody>
</table>
Effects of 24-hr PM$_{2.5}$ NAAQS Changes

<table>
<thead>
<tr>
<th>Adverse Health Effect</th>
<th>Benefits of Achieving</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Previous NAAQS</td>
</tr>
<tr>
<td>Upper Respiratory Symptoms in Asthmatic Children</td>
<td>16,000</td>
</tr>
<tr>
<td>Lower Respiratory Symptoms in Children</td>
<td>880</td>
</tr>
<tr>
<td>Respiratory Hospital Admissions in Elderly</td>
<td>7</td>
</tr>
<tr>
<td>Nonfatal Heart Attacks (18+ years)</td>
<td>27</td>
</tr>
<tr>
<td>Minor Restricted Activity Days (18-64 years)</td>
<td>17,000</td>
</tr>
<tr>
<td>Work Loss Days (18-64 years)</td>
<td>3,000</td>
</tr>
</tbody>
</table>
• SJV residents face significant risks from air pollution.
• There is no “clean” season (ozone in summer and PM in winter).
• As science advances, known risks grow.
• Impacts of air pollution are not distributed evenly.
• More exposures than average for Latinos and blacks; Fresno and Kern Counties.