Exceptional Event Documentation

Hanford, Corcoran, Oildale, and Bakersfield, California October 9, 2008

San Joaquin Valley Unified Air Pollution Control District

February 18, 2010

Prepared By

Shawn R. Ferreria, Senior Air Quality Specialist Jennifer Ridgway, Air Quality Specialist Jessica Fierro, Senior Air Quality Specialist

Documentation Provided By

The Compliance Department and Air Monitoring Section Staff David Nunes, Senior Air Quality Specialist Jon Klassen, Air Quality Specialist

Reviewed By Scott Nester, Director of Planning Errol Villegas, Planning Manager Stephen Shaw, Supervising Air Quality Specialist

San Joaquin Valley Unified Air Pollution Control District 1990 E. Gettysburg Avenue Fresno, California 93726

(559) 230-6100

www.valleyair.org

TABLE OF CONTENTS

Executive Summary	1
Section 1: Meeting Federal Requirements for Exceptional Events 1.1: Procedural Requirements	2
1.2: Documentation Requirements	3
Section 2: Air Pollutant Controls in the San Joaquin Valley	4
Section 3: PM10 concentrations on October 9, 2008 were in excess of normal, historical fluctuations	6
Section 4: PM10 concentrations were caused by a natural high wind event	11
4.1: A natural event of high winds occurred on October 9, 2008	11
4.2: The high winds affected air quality	15
4.3: The high winds caused the exceedance	17
4.3.1: Wind and PM10 data, hour-by-hour	17
4.3.2: Source - Receptor Analysis: Backward Trajectory	21
4.3.3: Source – Receptor Analysis: Forward Trajectory	29
4.3.4: October 9, 2008 Exceptional Event Coverage	35
Section 5: Conclusion	36
List of Appendices	

Appendix A: SJV Air Monitoring Network Map

- Appendix B: Public Notification of the Exceptional Event
- Appendix C: Media Coverage
- Appendix D: District Compliance Department Coverage
- Appendix E: Weather Analysis
- Appendix F: Climatology

Appendix G: AQS Printout

LIST OF FIGURES

Figure 1: October Historical Maximum 24-Hour PM10 Concentration, 1987 through October 9, 2008
Figure 2: Box-Whisker Plot of PM10 data by site for the month of October
Figure 3: Map showing area of the wind blown dust analysis
Figure 4: Hourly PM10 concentrations at Corcoran and hourly wind speed at Hanford
on October 9, 2008
Figure 5: Hourly PM10 concentrations at Corcoran and hourly wind speed at Lemoore
Naval Air Station on October 9, 200819
Figure 6: Hourly wind speed at Bakersfield Meadows Field Airport, October 9, 2008. All
times in PST
Figure 7: Backward trajectory for 12:00 AM PST on October 10, 2008 showing air parcel trajectories to the Hanford/Corcoran (left) and Oildale/Bakersfield (right)
receptors during the blowing dust event
Figure 8: Location of air mass at 7:00 AM PST arriving in Bakersfield between 9:00 AM PST and 11:00 AM PST
Figure 9: Location of air mass at 10:00 AM PST arriving in Bakersfield between 12:00 PM PST and 2:00 PM PST25
Figure 10: Location of air mass at 1:00 PM PST arriving in Bakersfield between 3:00
PM PST and 5:00 PM PST
Figure 11: Location of air mass at 4:00 PM PST arriving in Bakersfield between 6:00
PM and 8:00 PM PST27
Figure 12: Location of air mass at 7:00 PM PST arriving in Bakersfield between 9:00
PM PST and 11:00 PM PST
Figure 13a: Forward Trajectories at 10, 100 and 250 meters, Lemoore/Hanford Area to
Corcoran, October 9, 2008, 6:00 AM PS1 to 8:00 AM PS1
Figure 13D. Forward Trajectories at 10, 100 and 250 meters, Lemoore/Haniord Area to
Corcorari, October 9, 2006, 6.00 AM PST to 6.00 AM PST
And Area Area Area Area Area Area Area Area
Figure 14b: Forward Trajectories at 100 meters. Lemoore/Hanford Area to
Oildale/Bakersfield Area, October 9, 2008, 6:00 AM PST to 1:00 PM PST
Figure 15a. Forward Trajectories at 10, 100 and 250 meters. Lemoore/Hanford Area to
Bakersfield, October 9, 2008, 6:00 AM PST to 1:00 PM PST
Figure 15b. Forward Trajectories at 10, 100 and 250 meters, Lemoore/Hanford Area to
Bakersfield, October 9, 2008, 6:00 AM PST to 1:00 PM PST

LIST OF TABLES

Table ES-	1: 24-hour Average PM10 Concentrations, October 9, 20081
Table 3-1:	Historical Ranking of October 9, 2008 PM10 Concentrations by Site
Table 3-2:	Maximum PM10 Concentrations in the Month of October by year since 1987
Table 3-3:	PM10 Monitor Site Location and First Available October Data Point9
Table 4-1:	Drop in maximum temperature surrounding the event
Table 4-2:	24-hour average PM10 concentrations, μg/m ³ 16
Table 4-3:	Corcoran Hourly PM10 concentrations increased with wind speed
Table 4-4:	Winds transported particulates to Bakersfield on October 9, 2008

Executive Summary

The analysis in this report demonstrates that the exceedances of the PM10 National Ambient Air Quality Standard (NAAQS) recorded on October 9, 2008 were caused by unusually strong winds, and therefore gualify as an Exceptional Event under the Clean Air Act.

A strong, dry cold front passed over the region on October 9, causing the high wind event. The cold front generated strong and gusty northwesterly winds over the western San Joaquin Valley. The windstorm overwhelmed the San Joaquin Valley Air Pollution Control District's rigorous particulate matter emission controls, and entrained dust from the dry soil in the Fresno and Kings County areas. PM10 concentrations first became elevated (to historically high concentrations) in the Hanford/Corcoran area and then the airborne dust was transported to the southeast. The wind transported PM10 into Kern County and led to historically high PM10 concentrations in the Oildale/Bakersfield area, as shown in Table ES-1. The exceedances of the NAAQS would not have occurred but for the wind event.

Site	PM10 Concentration
Hanford	226 µg/m³
Corcoran Filter-based monitor	306 µg/m³
Corcoran Real-time monitor	275 µg/m³
Oildale	224 µg/m³
Bakersfield – Golden State Highway	267 µg/m³
Bakersfield – California Avenue	256 µg/m³

Table ES-1: 24-hour Average PM10 Concentrations, October 9, 2008 (All filter-based monitors, unless otherwise noted)

This report meets all U.S. Environmental Protection Agency (EPA) documentation

standards for Exceptional Events (see Section 1) and follows accepted EPA methodologies and guidance. Pursuant to federal regulations, with EPA concurrence, the October 9, 2008 PM10 measurements shown in Table ES-1 would be excluded from consideration regarding the NAAQS (40 Code of Federal Regulations (CFR) 50.14(b)).

Section 1: Meeting Federal Requirements for Exceptional Events

EPA's *Treatment of Data Influenced by Exceptional Events* rule (codified in 40 CFR 50) describes the requirements for exceptional events flagging and documentation. The District meets all of these procedural and documentation requirements.

1.1: Procedural Requirements

- 1. **Public notification that event was occurring** (*40 CFR 50.14(c)*) The District issued a press release on October 9, 2008 at 2:10 PM PDT highlighting elevated PM10 levels due to high winds (see Appendix B).
- 2. Place informational flag on data in the Air Quality System (AQS) (40 CFR 50.14(c)(2)(i))

When the District suspects that data may be influenced by an exceptional event, the District expedites analysis of the filters collected from the potentially-affected, filter-based air monitoring instruments. The laboratory weighs the filter and submits the data into AQS. The District submits real-time data into AQS. Once the data is in AQS, if the District's preliminary analysis supports influence from an exceptional event, the District submits a preliminary flag into AQS. The data is not official until it undergoes more thorough quality assurance and quality control, leading to certification by May 1¹ of the year following the calendar year in which the data was collected (40 CFR 58.15(a)(2)). The data flag is not official until the exceptional event documentation is approved by EPA. An AQS printout showing that the data has been flagged is in Appendix G.

3. Notify EPA of intent to flag through submission of initial event description by July 1 of calendar year following event (40 CFR 50.14(c)(2)(iii)) The District communicated with EPA via phone and email shortly after the date of the event in question to alert them of an exceptional event.

The District submitted a letter to EPA on June 30, 2009 listing the days the District intended to analyze under the exceptional events policy. The October 9, 2008 PM10 high wind event was included on this list.

4. Document that the public comment process was followed for event documentation (40 CFR 50.14(c)(3)(v))

The District will conduct a 30-day public comment period on this document from February 18, 2010 through March 20, 2010. Public notice will be available in Valley newspapers and on the District website. Evidence of this notice will be submitted to EPA with the exceptional event documentation.

5. Submit demonstration supporting exceptional event flag (40 CFR 50.14(a)(1-2))

This document is intended to satisfy this requirement.

¹ This date was recently changed from July 1st to May 1st by EPA.

1.2: Documentation Requirements

- Provide evidence that the event satisfies "exceptional event" criteria set forth in 40 CFR 50.1(j) (40 CFR 50.14(c)(3)(iv)(A)) See Sections 2 and 4 of this document. According to 40 CFR 50.1(j), also Clean Air Act (CAA) Section 319, an exceptional event meets the all of following criteria:
 - a. Affects air quality (See Section 4 of this document)
 - b. Is not reasonably controllable or preventable (See Section 2 of this document)
 - c. Is caused by either (1) human activity that is unlikely to recur at a particular location or (2) a natural event (See Section 4 of this document)
 - d. Is determined by EPA to be in accordance with 40 CFR 50.14 to be an exceptional event (Pending EPA concurrence upon receipt of this document)
- There is a clear, causal relationship between the measurement under consideration and the event (40 CFR 50.14(c)(3)(iv)(B)) See Section 4 of this document.
- Provide evidence that the event is associated with a measured concentration in excess of normal, historical fluctuations (40 CFR 50.14(c)(3)(iv)(C)) See Section 3 of this document.
- Provide evidence that there would have been no exceedance or violation but for the event (the "but for" test) (40 CFR 50.14(c)(3)(iv)(D)) See Section 5 of this document.

Section 2: Air Pollutant Controls in the San Joaquin Valley

This section satisfies the following federal requirement:

An exceptional event is one that is not reasonably controllable or preventable
 (40 CFR 50.14(c)(3)(iv)(A) and 40 CFR 50.1(j))

While high winds are not controllable, particulate matter emissions have been stringently controlled by the San Joaquin Valley Air Pollution Control District (District). The District's pollution controls are recognized as some of the toughest in the nation. Most notable among the District's PM controls:

- Regulation VIII (Fugitive PM10 Prohibitions), which requires actions to prevent, reduce, and mitigate anthropogenic fugitive dust emissions.
- Rule 4550 (Conservation Management Practices), which limits fugitive dust emissions from agricultural operations.
- Rule 4901 (Wood Burning Fireplaces and Wood Burning Heaters), which restricts wood burning when ambient PM concentrations approach the 24-hour NAAQS for PM2.5 or PM10 between November 1 and February 28.
- Rule 4103 (Open Burning), which prohibits the burning of most agricultural waste materials and severely restricts the burning of the non-prohibited material, in conjunction with the District's Smoke management Program.
- Rule 4106 (Prescribed Burning and Hazard Reduction Burning), which assures that the controlled burning of forest and rangeland residue in the District's foothills and mountains is conducted to prevent air quality problems.

Recognizing the effectiveness of the District's PM control measures, EPA approved the District's PM10 control strategy as Best Available Control Measures (BACM) in its May 26, 2004 approval of the *2003 PM10 Plan* (69 *FR* 30035). EPA reiterated this BACM approval in its November 12, 2008 approval of the District's *2007 PM10 Maintenance Plan*, noting that EPA had also approved many of the District's individual rules as BACM since the *2003 PM10 Plan* approval (73 *FR* 66766). In addition, PM and PM precursors continue to be further controlled in the Valley through the District's ongoing planning and regulatory efforts, including the *2007 Ozone Plan*, the *2008 PM2.5 Plan*, and the resulting control measures.

The District's BACM and other control measures have significantly reduced ambient PM10 concentrations and allowed the San Joaquin Valley Air basin to attain the PM10 NAAQS. The District's BACM-level pollution controls are designed for the typical and wide range of climate conditions in the San Joaquin Valley. For a natural event to overwhelm these controls, the characteristics of the event - by definition - must be outside the norm. Because the District's controls are considered Best Available Control Measures and because the controls were in place at the time, the dust entrained on October 9, 2008 was clearly not reasonably controllable or preventable.

Human activities that generated PM10 emissions were approximately constant before, during and after the October 9, 2008 wind event, indicating that the sudden increase in

PM10 concentrations was not driven by human activity. Based on a survey of the available information, there is no evidence of unusual anthropogenic emissions on October 9, 2008. Agricultural burning was extremely restricted in the San Joaquin Valley on October 9, pursuant to District Rule 4103 and the District's Smoke Management Program: only 11 pounds of PM10 emissions from the burning of agricultural waste were authorized on that day.

Typical October farming operations in Kings County and the western part of Fresno County include land preparation and planting for winter crops, harvesting of summer crops, and end-of-year land cultivation to increase rain water infiltration into the soil to prevent soil erosion and refill the subsoil aquifer. The San Joaquin Valley Air Pollution Control District has several effective fugitive dust control measures in place. District Rule 8061 (Paved and Unpaved Roads) and Rule 8081 (Agricultural Sources) establishes fugitive dust control requirements to stabilize non-field surfaces of paved and unpaved roads, vehicle and equipment parking and traffic areas, vehicle carryout/trackout, and bulk material piles. District Rule 4550 (Conservation Management Practices) for agricultural operations implement multiple fugitive dust control measures for land preparation / cultivation, harvest activities, unpaved roads and equipment yards, and other cultural practices.

The above practices are applied as an industry standard and they sufficiently control dust under the San Joaquin Valley's typical range of weather circumstances. Exceptions to fugitive dust control may occur when aberrant weather conditions occur, thwarting all good faith, properly applied and timed dust control practices.

Additionally, a summary of the District's compliance inspections on October 9, 2008 is shown in Appendix D.

Section 3: PM10 concentrations on October 9, 2008 were in excess of normal, historical fluctuations

This section satisfies the following federal requirement:

 Provide evidence that the event is associated with a measured concentration in excess of normal, historical fluctuations (40 CFR 50.14(c)(3)(iv)(C))

PM10 concentrations on October 9, 2008 were exceptionally high at the Bakersfield, Oildale, Hanford, and Corcoran sites, as summarized in Table 3-1. The measured PM10 concentrations on October 9 at Hanford, Corcoran, Oildale, Bakersfield – Golden, and Bakersfield – California were greater than the 99th Percentile.

Table 3-1: Historical Ranking of October 9, 2008 PM10 Concentrations by Site (as of October 9, 2008)

Site	Concentration, μg/m ³	Historical Ranking	Year Data Record Began
Corcoran	306	1 st	1986
Hanford	226	2 nd	1993
Bakersfield – California	256	1 st	1994
Bakersfield – Golden	267	2 nd	1994
Oildale	224	2 nd	1990

Historically, 24-hour PM10 primary monitor concentrations are elevated in the month of October. However, due to the strong control measures in place in the San Joaquin Valley Air Basin, the frequency of PM10 exceedances in October and the maximum PM10 concentrations for October have decreased over the past several years (see Table 3-2 and Figure 1). It is noted that subsequent windblown dust events have occurred in the southern San Joaquin Valley on October 30, 2008, October 13, 2009, and October 27, 2009. These events will be the subject of forthcoming Exceptional Events documents.

With the exception of the EPA-approved October 26, 2006 high wind event and the wind-blown dust events in October 2008 and 2009, peak PM10 levels during October have remained below the NAAQS since 2002. Using the methodology accepted by EPA, it is clear that the PM10 levels on October 9, 2008 were outside of historical maximums.

Date	Max PM10 Value (μg/m ³)	Location
10/6/1987	207	Corcoran – Van Dorsten
10/24/1988	162	Five Points
10/19/1989	193	Corcoran – Van Dorsten
10/26/1990	157	Visalia-Church
10/15/1991	161	Corcoran-Van Dorsten
10/13/1992	143	Corcoran-Van Dorsten
10/28/1993	192	Hanford
10/23/1994	112	Hanford
10/4/1995	274	Corcoran-Van Dorsten
10/18/1996	141	Corcoran
10/25/1997	120	Corcoran
10/20/1998	146	Hanford
10/21/1999	174	Corcoran
10/9/2000	106	Corcoran
10/16/2001	149	Hanford
10/29/2002	168	Corcoran
10/18/2003	140	Hanford
10/12/2004	123	Hanford
10/13/2005	117	Hanford
10/26/2006	304*	Corcoran
10/30/2007	112	Corcoran
10/9/2008	306	Corcoran

Table 3-2: Maximum PM10 Concentrations in the Month of October by year since1987

* EPA concurred with the District's request to flag October 26, 2006 as having been caused by an exceptional event of high winds.

Figure 1: October Historical Maximum 24-Hour PM10 Concentration, 1987 through October 9, 2008

* EPA concurred with the District's request to flag October 26, 2006 as having been caused by an exceptional event of high winds.

Pursuant to methodologies used by EPA in previous approvals of Exceptional Events, the District developed box-whisker plots to further analyze October PM10 data through 2008 for active sites in the San Joaquin Valley to determine if the concentrations on October 9, 2008 were in excess of normal historical fluctuations (including background)(see Figure 2). The starting date of monitoring at each site is summarized in Table 3-3.

The District used these box-whisker plots to identify outliers. An outlier is defined as a point that falls above the upper quartile (top of the box). A quartile is one of the four divisions of observations which have been grouped into four equal-sized sets, based on their statistical rank. The following equation identifies where the outlier resides:

Outlier >
$$QU + 1.5*IQR$$

Where, QU is the 75th Percentile value, and IQR is the difference between the 75th and 25th Percentile values. For Hanford, Corcoran, Oildale, Bakersfield California, and Bakersfield Golden, the PM10 concentrations measured on October 9 were outliers (see Figure 2). Thus, the October 9, 2008 exceedances were clearly in excess of normal historical fluctuations.

PM 10 Monitor Site Location	First Available October Data Point
Bakersfield - CA	10/5/1994
Bakersfield - Golden	10/5/1994
Clovis	10/3/1991
Corcoran*	10/6/1987
Fresno - Drummond	10/1/1989
Fresno - 1st	10/2/1990
Hanford	10/11/1993
Merced M St.	10/3/1999
Modesto - 14th St.	10/2/1998
Oildale	10/8/1987
Santa Rosa Rancheria	10/2/2006
Stockton - Hazelton	10/6/1987
Stockton - Wagner-Holt	10/18/1996
Turlock Minaret St.	10/5/1994
Visalia Church St.	10/6/1987

* - Van Dorsten through 1997, then Patterson Avenue thereafter

Collocated October 1995 through 1997

Figure 2: Box-Whisker Plot of PM10 data by site for the month of October (as of October 9, 2008)

Section 4: PM10 concentrations were caused by a natural high wind event

This section satisfies the following federal requirements:

- The event was caused by a natural event (40 CFR 50.14(c)(3)(iv)(A) and 40 CFR 50.1(j),
- The event affected air quality (40 CFR 50.14(c)(3)(iv)(A) and 40 CFR 50.1(j),
- There is a clear, causal relationship between the measurement under consideration and the event

(40 CFR 50.14(c)(3)(iv)(B))

On October 9, 2008, a high wind event entrained geologic particulate matter (PM) in the source area and then transported the suspended PM to the receptor area. The western and southern portions of the Valley were affected by this event, particularly the area shown in Figure 3.

Wind speeds in excess of 17 miles per hour have been documented to entrain typical San Joaquin Valley soil material into the atmosphere. Once entrained, PM can be transported by winds much slower than the entrainment wind speed. While it is easy to visualize how airborne dust is transported downwind, it is useful here to explain how soil material can become entrained, and how it stays suspended.

In order for soil materials to be entrained into the atmosphere, winds must be strong enough for surface particles to overcome friction and become dislodged. As particles are pushed and rolled along the ground, they can become airborne. Turbulent winds, swirling and moving vertically away from the surface, surround and lift the airborne particle much as a kite is lifted into the air when it is raised slightly off the ground.

Turbulence created by surface obstructions, strong wind sheer, and surface heating mixes the entrained dust higher into the atmosphere. Vertical movement associated with turbulent mixing works against gravitational settling of particles, allowing dust to stay suspended in the atmosphere at speeds lower than the entrainment velocity. The higher the dust is mixed into the atmosphere, the longer it remains suspended.

Similar to a kite moving higher into the atmosphere, the further a particle moves away from the surface, the easier it is to keep it suspended. The combination of reduced surface obstructions, turbulent mixing, and exposure to higher winds aloft, allows soil material to be suspended as dust at wind speeds lower than those required for entrainment.

As supporting evidence that PM10 was transported to the Oildale/Bakersfield area on October 9, 2008, the following expert panel's findings are provided. The following methodology document for estimating fugitive windblown and mechanically resuspended dust emissions applicable to air quality modeling was prepared for the Western Regional Air Partnership (WRAP).

According to expert panel's findings:

" In general, the fraction of the mechanically generated fugitive dust from roads and bare surfaces that is removed from the atmosphere by gravitational settling and by impaction on nearby obstacles (such as vegetation) is much larger than that associated with fugitive windblown dust. This is due to the fact that the mechanically generated particles tend to remain closer to the ground for longer periods after suspension than windblown dust such that there is a higher probability that these mechanically generated particles will be removed from the atmosphere close to their source. For mechanically generated road dust, the initial vertical energy associated with the moving vehicles that generated the suspendable particles is short-lived and unsustained. And, in the absence of strong winds with a large vertical component to sustain the vertical motion of these mechanically generated particles, these emissions are dispersed vertically above the ground and any downwind obstacles solely by the daytime turbulent eddies caused by solar heating of the ground. On the other hand, windblown dust emissions may be lofted vertically to great heights above the ground by the sustained energy provided by the vertical component of the wind (especially for strong winds with large vertical components such as those associated with dust devils or thunderstorms) and consequently may be transported much longer distances from the source of emissions than mechanically generated fugitive dust emissions." (Countess, et. al.)

The panel concluded that windblown dust emissions are able to travel much greater distances from the source compared to mechanically generated fugitive dust emissions. The high wind event on October 9, 2008 was sufficient enough to loft emissions vertically to heights above the ground, where these emissions were then carried southeastward toward the Oildale/Bakersfield area.

4.1: A natural event of high winds occurred on October 9, 2008

There are many sources of documentation that may be used, if available, to document and establish an exceptional event, as described in the District's *Natural Events Action Plan* (NEAP):

- Meteorological data (e.g., wind speed and wind direction to support a source receptor relationship)
- Modeling and receptor analysis
- Videos and/or photographs of the event and the resulting emissions
- Maps of the areas showing sources of emissions and the area affected by the event
- Media accounts of the event
- Filter analysis

Figure 3: Map showing area of the wind blown dust analysis

As shown in Figure 3, the San Joaquin Valley is a distinct inter-mountain valley in Central California, oriented southeast to northwest, with the slightly higher end of the valley closer to Los Angeles and the low end at the Sacramento-San Joaquin River Delta near San Francisco. The Valley is bounded by the Sierra Nevada range to the east, the Temblor and Coastal ranges to the west and the Tehachapi and San Emigdio ranges to the south. The floor of the San Joaquin Valley is approximately 200 miles long and 80 miles wide on average. In October of each year, the wind direction is generally from the northwest, following the orientation of the valley and Sierra Nevada Mountains.

In 2008, the southern San Joaquin Valley had experienced a dry spring, summer and fall, with seasonal precipitation totals running well below normal. A strong, dry cold front passed over the region on October 9, causing the high wind event. There was a significant drop in temperature over just a two day period, from October 8 to October 10 (shown in Table 4-1), and this demonstrates a significant weather pattern change. The frontal passage ushered in stronger winds which led to the October 9, 2008 exceedance.

	October 8	October 10
Bakersfield	86° F	66° F
Fresno	87° F	76° F

Table 4-1:	Drop in	maximum	temperature	surrounding	the event
------------	---------	---------	-------------	-------------	-----------

According to T&B Systems analysis of the CRPAQS (California Regional Particulate Air Quality Study) study area:

"There is evidence that winds at speeds of approximately 8 m/s [meters per second; 8 m/s is approximately 17.9 miles per hour (mph)] or greater can contribute to coarse particulate concentrations. ... there are indications that higher gusts associated with lower wind speeds (e.g. 10 m/s [22.3 mph] gusts when average wind speeds are closer to 6 m/s [13.4 mph]) may provide explanations for higher coarse mass concentrations" (T&B Systems, 2004, p 4).

This report concluded that wind speeds of 8 m/s (17.9 mph) could be sufficient to entrain surface soil into the atmosphere. The District used this speed as an indicator of the potential for dust entrainment during high wind events.

On October 9, 2008, in the Corcoran and Hanford area, the Lemoore Naval Air Station reported NW to NNW wind gusts of 35 mph or greater from 8:51 AM to 5:56 PM Pacific Standard Time (PST), with peak winds gusting to 43 mph at 10:38 AM PST. In contrast, the Bakersfield Meadows Field Airport reported peak winds at 14 mph at 7:54 AM PST, below the 17 mph threshold identified by T&B Systems. Winds between Corcoran and Bakersfield were sufficient to entrain dust into the atmosphere. The District used

meteorological data collected at Alpaugh as a point of analysis between Corcoran and Bakersfield to demonstrate this.

The wind speed at Alpaugh is measured at 2 meters Above Ground Level (AGL). In order to calculate the wind speed at Alpaugh at 10 meters above ground level the District used the following relationship. Over a flat surface with no obstructions and a well-mixed atmosphere, wind speed typically varies logarithmically with height above ground. This relationship is modeled using the equation:

$$V_1/V_2 = (Z_1/Z_2)^p$$

where:
 $V = wind speed,$

Z = height above ground,

p is approximately 0.143 for flat terrain and 0.4 for rough terrain, subscripts 1 and 2 denote two different sampling heights AGL

A number of documents (including *Wind in California* (California Department of Water Resources Bulletin No. 185, January 1978) and *An Introduction to Boundary Layer Meteorology* (Roland Stull, 1997)) utilize this equation. While this equation is not representative of the vertical wind structure in all weather conditions, it is appropriate to use this equation for the strong wind conditions that occurred on October 9, 2008.

The Alpaugh CIMIS station (a flat terrain area) reported a peak hourly averaged wind speed of 16.6 mph at 2 meters AGL (see Table 4-4 and Appendix E). The hourly averaged wind speed at 10 meters AGL would be 20.9 mph, as shown below: $V_{10 \text{ meters}} = V_{2 \text{ meters}} (Z_{10 \text{ meters}}/Z_{2 \text{ meters}})^{0.143}$

 $V_{10 \text{ meters}} = (16.6 \text{ mph}) (10 \text{ meters}/2 \text{ meters})^{0.143}$

 $V_{10 \text{ meters}} = 20.9 \text{ mph}$

This computed 20.9 mph wind speed at 10 meters AGL at Alpaugh is above the dust entrainment wind speed threshold.

On October 9, the strongest winds observed north and west of Hanford and Corcoran resulted in blowing dust in the western portion of the Valley. The blowing dust was then transported to the southeast to Oildale and Bakersfield and other parts of the southern San Joaquin Valley.

4.2: The high winds affected air quality

PM10 concentrations were at their highest for the week on October 9, as shown in Table 4-2. In Corcoran, PM10 concentrations were low to moderate from October 6 to October 8 due to marginal dispersion conditions. A strong cold front passage on October 9 accompanied by high winds created blowing dust in the San Joaquin Valley, and this caused an increase in PM10. The high wind event was widespread and caused elevated PM10 levels at most of the Valley's western and southern monitoring

locations. The high wind event continued into the early hours of October 10. As the high wind event subsided, PM10 concentrations decreased.

Monitoring site		Oct. 7	Oct. 8	Oct. 9	Oct. 10	Oct. 11	Oct. 12
Stockton –Wagner Holt				65			
Stockton – Hazelton				55			
Tracy	15	20	21	64	38	23	42
Modesto – 14 th				49			
Turlock				96			
Merced – M Street				73			
Clovis – Villa				63			
Fresno- First Street				78			
(Filter Based) ²							
Fresno – Drummond		48		99			
Hanford				226			
Santa Rosa Rancheria ¹				286 ¹			
Corcoran	47	62	77	275	105	46	42
Corcoran (Filter Based) ²	49			306 ²			42
Visalia -Church				104			
Oildale				224			
Bakersfield – Golden State ³				267			
Bakersfield – California				256		48	

Table 4-2: 24-hour average PM10 concentrations, μg/m³

¹ The Santa Rosa Rancheria site is located in Kings County (about four miles south of Lemoore) on land owned by the Tachi Yokut Tribe. The monitor was impacted by the high winds and blowing dust described in this document. While the monitor is operated by a sovereign nation and not within the jurisdiction of the District, the data collected from this monitor represents air quality within the Lemoore area of the San Joaquin Valley Air Basin. The District holds the October 9, 2008 measurement at Santa Rosa Rancheria was similarly caused by high winds and encourages EPA to flag the data as an Exceptional Event.

² Primary analyzers take precedence over secondary analyzers when multiple data are available.

³ The real-time PM10 monitor at Bakersfield – Golden experienced a "Machine Malfunction" prior to the wind event and was not in operation the week of October 9, 2008.

4.3: The high winds caused the exceedance

Section 4.1 showed that there was a natural event of high winds on October 9, 2008. Section 4.2 showed that high PM10 concentrations were affected at the time of the high wind event. The analysis below shows that the high winds caused the PM10 exceedance.

4.3.1: Wind and PM10 data, hour-by-hour

Strong, gusty winds occurred in Hanford and Lemoore during the October 9, 2008 blowing dust event, and hourly PM10 concentrations in Corcoran became elevated in conjunction with the high winds (see Table 4-3 and Figures 4 and 5). Observations at Lemoore Naval Air Station on October 9 indicate 13 hours of sustained winds greater than 17.9 mph and 9 hours with gusts greater than 31 mph. The highest recorded gust was 40 mph. Blowing dust was observed at the Lemoore Naval Air Station from 9:00 AM PST until 11:00 PM PST. Observations at Hanford on October 9 indicate 6 hours of sustained winds greater than 17.9 mph and 9 hours with gusts greater than 23 mph. The highest recorded gust was 30 mph. One hour of missing wind data occurred at Hanford on October 9. Haze was observed at Hanford from 12:00 PM PST until 19:00 PM PST.

October 9 wind speeds were sufficient to transport the dust plume from Corcoran to Bakersfield. Observations at Bakersfield Meadows Field Airport on October 9 indicated no hours of sustained winds greater than 17.9 mph and no hours with gusts greater than 23 mph (See Table 4-4 and Figure 6). The Bakersfield Meadows Field Airport observation showed reduced visibilities (haze) between hours 14 and 20. The visibility reduction can be used an indication of the dust plume arriving in the Oildale/Bakersfield area.

Bakersfield Meadows Airport reported a reduction of visibility, marking the arrival of the dust plume into the Bakersfield area. To track the progress of the dust plume, the District used Alpaugh and Shafter as points in between Hanford/Corcoran and Oildale/Bakersfield. Alpaugh is located 16 miles south of Corcoran. Shafter is located 28 miles to the south/southeast of Alpaugh. Shafter is located 15 miles to the west/northwest of Bakersfield Meadows Airport and Oildale. The approximate distance between Corcoran and Oildale is 55 miles.

PM10 hourly levels began exceeding the 24 hour NAAQS on October 9 during hour 8 in Corcoran, with the PM10 remaining elevated though hour 19 (see Table 4-4). The five-hour average wind speed from hour 8 to hour 14 at Alpaugh was 14.8 mph. Wind speeds were slower from hour 8 to hour 14 at Shafter and Bakersfield Meadows Airport, averaging 9 and 11 mph respectively. At hour 14, Bakersfield Meadows Airport reported haze (see Table 4-4).

The District concludes that the dust plume arrived in Alpaugh between hour 9 and hour 10. Beyond Alpaugh, the wind speeds began to slowly decrease. The dust plume

arrived shortly before hour 13 at Shafter, where the average wind speed was 9 mph. With wind speeds of 10 mph at Bakersfield-Meadows Airport, the dust plume would have arrived around hour 14. Indeed, at hour 14, the weather observation at Bakersfield-Meadows Airport reported haze.

This analysis shows that the October 9, 2008 high wind event resulted in entrainment of dust and reports of blowing dust throughout the western and southern San Joaquin Valley. The strong winds to the northwest transported and deposited PM10 where wind speeds slowed across the southern parts of the San Joaquin Valley.

	Corcoran Real-	Ob: Na	servations ational We	from	Hanford, Service	Observations from Lemoore, Na Air Station			
Hour (PST)	time PM10 concen- tration (μg/m ³)	Wind Speed (mph)	Wind Direction	Wind Gust (mph)	Weather Observation	Wind Speed (mph)	Wind Direction	Wind Gust (mph)	Weather Observation
0	49	5	NW		Clear	6	WSW		Clear
1	47	6	NW		Clear	6	W		Clear
2	41	0	CALM		Clear	8	W		Clear
3	42	0	CALM		Clear	6	WNW		Clear
4	50	0	CALM		Clear	6	WNW		Clear
5	54	3	NW		Clear	12	NW		Clear
6	85	6	WNW		Clear	12	NW		Clear
7	73	9	NW		Clear	15	NNW		Clear
8	245	12	NW		Clear	17	NW		Clear
9	-	18	NW	25	Clear	26	NNW	37	Blowing Dust
10	-	-	-	-	-	33	NW	39	Blowing Dust
11	-	16	NW	23	Haze	33	NNW	40	Blowing Dust
12	851	20	NNW	24	Haze	30	NNW	38	Blowing Dust
13	711	18	NW	25	Haze	31	NW	37	Blowing Dust
14	632	18	NW	30	Haze	29	NNW	36	Blowing Dust
15	680	18	NW	26	Haze	29	NNW	36	Blowing Dust
16	771	20	NW	28	Haze	29	NW	40	Blowing Dust
17	673	15	NW	25	Haze	24	NW	35	Blowing Dust
18	352	17	NW		Haze	20	NW		Blowing Dust
19	162	15	NW		Haze	18	NW		Blowing Dust
20	85	16	NW	23	Clear	15	NW		Blowing Dust
21	62	10	WNW		Clear	23	NW		Blowing Dust
22	64	10	WNW		Clear	17	NW		Blowing Dust
23	49	8	NW		Clear	21	NW		Blowing Dust
Avg.	275								
Hour 0 is Midnight to 12:59:59 AM, Pacific Standard Time. Gust is a peak 3 second average and wind speed is a 10									

Table 4-3: Corcoran Hourly PM10 concentrations increased with wind speed

Hour 0 is Midnight to 12:59:59 AM, Pacific Standard Time. Gust is a peak 3 second average and wind speed is a 10 minute average ending on the hour. Weather data at Lemoore Naval Air Station was obtained from the Mesowest website and the National Weather Service. A dash indicates data was not available.

Figure 4: Hourly PM10 concentrations at Corcoran and hourly wind speed at Hanford on October 9, 2008.

* All times in PST. Missing data from 9:00 to 11:00 due to instrument calibration.

Figure 5: Hourly PM10 concentrations at Corcoran and hourly wind speed at Lemoore Naval Air Station on October 9, 2008.

All times in PST. Missing data from 9:00 to 11:00 due to instrument calibration.

Hour	Southeast of the source area Corco Alpaugh Average Speed		south of south/s south of oran 15 mi west/ne Bakers N Hourly e Wind (mph) (mp		les to the outheast of oaugh; les to the orthwest of ield Airport er Wind oeed h) and	Receptor area Bakersfield - Meadows Airport Wind Speed (mph) and Wind Direction		Bakersfield- Meadows Airport Weather Observation
	(µg/m³)	Direction		at 10 meters				
		at 2 meters AGL		AGL		at 10 meters AGL		
0	49	1	WSW	1.2	WNW	5	SE	Clear
1	47	2.3	WSW	1.2	E	3	NW	Clear
2	41	2.8	W	1.2	N	0	CALM	Clear
3	42	1.4	ESE	1.2	SE	5	SE	Clear
4	50	1.9	SSE	1.2	NE	7	SE	Clear
5	54	2.6	SW	2.3	N	5	SSE	Clear
6	85	3.4	W	2.3	NNW	0	CALM	Clear
7	73	5.4	NW	5.8	WNW	7	N	Clear
8	245	9.6	NW	8.1	NNW	14	NNW	Clear
9	-	14.5	NW	10.4	NW	9	WNW	Clear
10	-	16.1	NW	9.2	NW	13	NW	Clear
11	-	16.2	NW	9.2	NW	13	NW	Clear
12	851	15.9	NW	8.1	NNW	9	WNW	Clear
13	711	16.3	NW	6.9	NNW	10	WNW	Clear
14	632	15.7	NW	9.2	NNW	10	NW	Haze
15	680	16.5	NW	8.1	NNW	13	NW	Haze
16	771	15.6	NW	9.2	NNW	10	NNW	Haze
17	673	16.6	NW	9.2	NNW	12	NNW	Haze
18	352	10.1	NW	8.1	NNW	12	NW	Haze
19	162	11	NW	8.1	NW	10	NW	Haze
20	85	8.8	NW	4.6	WNW	9	WNW	Haze
21	62	3.3	NW	3.5	W	8	W	Clear
22	64	4.5	WNW	2.3	SW	7	NNW	Clear
23	49	3.1	WNW	1.2	SSE	0	CALM	Clear
Hour 0 is Midnight to 1 AM, Pacific Standard Time. Alpaugh wind data is from the California Irrigation Management Information System (CIMIS) monitors. CIMIS wind speed is an hourly average sampled at 2 meters above ground level (AGL). Hourly averaged winds typically are								

 Table 4-4: Winds transported particulates to Bakersfield on October 9, 2008

Hour 0 is Midnight to 1 AM, Pacific Standard Time. Alpaugh wind data is from the California Irrigation Management Information System (CIMIS) monitors. CIMIS wind speed is an hourly average sampled at 2 meters above ground level (AGL). Hourly averaged winds typically are much lower than peak gusts. Wind speed measured at 2 meters would typically be lower than wind speed measured at 10 meters at the same location. For Bakersfield Meadows: G = Hourly peak gust, sustained wind is a 10 minute average at beginning of hour. Weather data at Bakersfield Meadows was obtained through the <u>http://www.met.utah.edu/mesowest/</u> website. Shafter wind data is an hourly average. M denotes peak minute average for that hour.

Figure 6: Hourly wind speed at Bakersfield Meadows Field Airport, October 9, 2008. All times in PST.

4.3.2: Source - Receptor Analysis: Backward Trajectory

The District ran the National Oceanic and Atmospheric Administration (NOAA) Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model for the natural event to identify air parcel source regions that contributed to peak particulate concentrations in Hanford/Corcoran and Oildale/Bakersfield. HYSPLIT is particle dispersion modeling (where "particle" refers to air parcels, not particulate concentration) developed through a joint effort between the NOAA and Australia's Bureau of Meteorology. The HYSPLIT model computes air parcel trajectories based on meteorological observation data files from the National Weather Service's National Centers for Environmental Prediction (NCEP). The model and full documentation are available at www.arl.noaa.gov/ready/hysplit4.html.

The backward trajectory at Hanford/Corcoran for 24 hours starting at 12:00 AM PST on October 10, 2008 (and moving backwards to 12:00 AM PST on October 9) indicates that the air parcels originated from central and northern California (Figure 7). The backward trajectory at Oildale/Bakersfield for 24 hours starting at 12:00 AM PST on October 10, 2008 indicates that air parcels originated along the central and western parts of the San Joaquin Valley and points northward (Figure 7).

The modeling and observations show that the blowing dust originated in the vicinity of western Fresno and Kings County. The model trajectory analysis takes the air parcel southeastward over northern Kings County, leading to the elevated PM10 reported at the Hanford/Corcoran and Oildale/Bakersfield particulate monitors. Winds were from the northwest during the blowing dust event, so the dust plume first influenced the Hanford/Corcoran monitors, as shown in Figures 4 and 5. Additionally, Santa Rosa Rancheria monitor was affected by the event. The dust plume then traveled southeastward, where it influenced the Oildale/Bakersfield monitor several hours later. The northern and eastern San Joaquin Valley did not appear to have been as influenced by the dust plume as the western and southern regions.

Figure 7: Backward trajectory for 12:00 AM PST on October 10, 2008 showing air parcel trajectories to the Hanford/Corcoran (left) and Oildale/Bakersfield (right) receptors during the blowing dust event.

The District used the HYSPLIT model to simulate the flow field for air parcels that arrived in Bakersfield between 7:00 AM PST October 9 and 12:00 AM PST October 10 to identify the areas that contributed to peak particulate concentrations at Bakersfield. The area north and west of Corcoran was the main source region for air arriving in Bakersfield during reduced visibilities recorded from 2:00 PM PST to 8:00 PM PST (see Figures 8 – 12; dots on the images indicate air parcel movement, not particulate concentration):

- Figure 8, 7:00 AM PST: the air mass that will affect Bakersfield starts near Corcoran, which has a PM10 concentration of 73 $\mu g/m^3$ at this point
- Figure 9, 10:00 AM PST: the air mass is just northwest of Corcoran.
- Figure 10, 1:00 PM PST: the air mass is in the vicinity of north and west of Corcoran. Corcoran measured an hourly PM10 concentration of 711 µg/m³ during this hour. The following hour (2:00 PM PST), Bakersfield Meadows Airport reported reduced visibilities.
- Figure 11, 4:00 PM PST: the air mass is in the vicinity of western Madera and west central Fresno County. Corcoran measured the highest PM10 concentration on October 9 of 771 μ g/m³ during this hour
- Figure 12, 7:00 PM PST: the air mass is in west central Fresno and northern Kings Counties. Corcoran measured an hourly PM10 concentration during this hour of 162 µg/m³. At this hour, Bakersfield Meadows Airport was still reporting reduced visibilities.

4.3.3: Source – Receptor Analysis: Forward Trajectory

The District also analyzes this exceptional event using forward trajectory analysis. EPA used this methodology to prove another high wind exceptional event (73 FR 14687-14713). For the October 9 event, these forward trajectories show that high winds carried dust from the source area through the receptor (impacted) locations of Hanford/Corcoran and then Oildale/Bakersfield (See Figures 13a through 15b).

Figure 13a: Forward Trajectories at 10, 100 and 250 meters, Lemoore/Hanford Area to Corcoran, October 9, 2008, 6:00 AM PST to 8:00 AM PST

Forward trajectories starting at 6:00 AM PST, October 9, 2008 from north of Lemoore/Hanford area, runtime is 2 hours. Trajectory start heights are at 10 meters in red, 100 meters in blue, and 250 meters in green. These trajectories show the likelihood of windblown dust entrained from north of Lemoore/Hanford area reaching Corcoran within 2 hours (8:00 AM PST) at the 100 meter and 250 meter height levels.

Figure 14a: Forward Trajectories at 100 meters, Lemoore/Hanford Area to Oildale/Bakersfield Area, October 9, 2008, 6:00 AM PST to 1:00 PM PST

Forward trajectories starting at 6:00 AM PST, October 9, 2008 from north of Lemoore/Hanford area. Runtime is 7 hours and start height of 100 meters. These trajectories show the likelihood of windblown dust entrained from just north of Hanford and Lemoore area to have reached and affected Corcoran and Oildale/Bakersfield.
Figure 14b: Forward Trajectories at 100 meters, Lemoore/Hanford Area to Oildale/Bakersfield Area, October 9, 2008, 6:00 AM PST to 1:00 PM PST

Figure 15a. Forward Trajectories at 10, 100 and 250 meters, Lemoore/Hanford Area to Bakersfield, October 9, 2008, 6:00 AM PST to 1:00 PM PST

Forward trajectories starting at 6:00 AM PST, October 9, 2008 from north of Lemoore/Hanford area, runtime is 7 hours. Trajectory start heights are at 10 meters in red, 100 meters in blue, and 250 meters in green. These trajectories show the likelihood of windblown dust entrained from north of LemooreHanford area reaching Corcoran within 7 hours (1:00 PM PST) at the 100 meter and 250 meter height levels.

Figure 15b. Forward Trajectories at 10, 100 and 250 meters, Lemoore/Hanford Area to Bakersfield, October 9, 2008, 6:00 AM PST to 1:00 PM PST

4.3.4: October 9, 2008 Exceptional Event Coverage

Television and newspaper coverage and District Compliance inspector reports confirmed the presence of high winds and blowing dust on October 9, 2008 through photographs, video documentation, and eyewitness accounts of the impacted areas (see Appendices C and D). These reports verified that high winds caused blowing dust on October 9, 2008.

Section 5: Conclusion

This section satisfies the following federal requirement:

 The exceedance would not have occurred but for the event (40 CFR 50.14(c)(3)(iv)(D))

District analysis shows that:

- PM is heavily controlled in the San Joaquin Valley, and these controls have decreased average PM10 levels in the Valley (Section 2)
- In spite of these controls, PM10 concentrations on October 9, 2008 were amongst the highest concentrations recorded over the past several years (Section 3)
- A natural event of high winds caused increases in PM, and PM concentrations decreased the following day, after the event was over (Section 4)

Thus, the District concludes that the exceedance would not have occurred but for the event. The uncontrollable high winds overwhelmed the BACM for PM that have been put in place in the Valley. As wind speeds decreased the next day, PM10 concentrations also decreased. As such, it is appropriate to identify the October 9, 2008 exceedance as an Exceptional Event.

In light of this conclusion, and with the demonstration (Section 1 and referenced sections) that the District has met all applicable requirements, the District requests EPA concurrence to flag the October 9, 2008 PM10 data for the Bakersfield, Oildale, Hanford, and Corcoran sites as having been caused by exceptional events.

References

Stull, Roland. An Introduction to Boundary Layer Meteorology. 1997

- California Department of Water Resources document, Wind in California, (Bulletin No. 185, January 1978)
- Countess, Richard; et. al. "Methodology for Estimating Fugitive Windblown and Mechanically Resuspended Road Dust Emissions Applicable for Regional Air Quality Modeling." *EPA 10th International Emission Inventory Conference*. May 2001. http://www.epa.gov/ttn/chief/conference/ei10/fugdust/countess.pdf
- Department of Earth and Atmospheric Sciences, University at Albany, State University of New York, <u>http://www.atmos.albany.edu/weather/difax.html</u> : Surface weather maps
- Desert Research Institute (DRI), Western Regional Climate Center, <u>http://www.wrcc.dri.edu</u>, *Western Climate Summaries*
- Environmental Protection Agency (EPA). *Guideline on the Identification and Use of Air Quality Data Affected by Exceptional Events.* July 1986.
- Environmental Protection Agency (EPA). *Treatment of Data Influenced by Exceptional Events; Final Rule.* March 2007.
- Environmental Protection Agency (EPA). *Memorandum: Areas Affected by PM10 Natural Events*. May 1996.
- KFSN Channel 30 (ABC), Fresno: Television news coverage
- KGPE Channel 47 (CBS), Fresno: Television news coverage
- Mesowest historical meteorological data, Mesowest, http://www.met.utah.edu/mesowest
- National Oceanic and Atmospheric Administration (NOAA): ESRL/Physical Sciences Division, Profiler Data
- National Oceanic and Atmospheric Administration (NOAA): Weather data, http://www.weather.gov
- Naval Postgraduate School, Department of Meteorology, Profiler Data, <u>http://www.weather.nps.navy.mil/profiler/coastprof.html</u>
- T&B Systems, Task 3.3 How Well Do Measurements Characterize Critical Meteorological Features, Subtask 3 Measurement of Gustiness, August 24, 2004, http://www.arb.ca.gov/airways/crpaqs/DA/Final/TB33st3.pdf

APPENDIX A: SJV Air Monitoring Network Map

APPENDIX B: Public Notification of the Exceptional Event

B1: Framework for Exceptional Event Determination

The District's NEAP requires the District to forecast a high wind episode if criteria five and most or all of criteria one through four are met:

- 1. There has been no recent, measurable precipitation in the potential source region for fugitive dust
- 2. The National Weather Service in Hanford and/or Sacramento has issued either a High Wind Warning, Wind Advisory, or Blowing Dust Advisory for certain parts of the San Joaquin Valley, and the predicted duration of high winds is sufficient to establish a NEAP episode
- 3. The surface weather maps show a potential for high winds to occur in the near future
- 4. Strong winds exist higher in the atmosphere in conjunction with other weather phenomena that can drive the higher wind speeds closer to the surface
- 5. The 24-hour average PM10 level is forecast to be above the National Ambient Air Quality Standard at one or more San Joaquin Valley sites

On October 9, 2008 all of the NEAP criteria were met:

Criteria 1. During the 139 consecutive days prior to the October 9, 2008 event, Bakersfield received no measurable precipitation. Hanford received 0.04 inches of precipitation 5 days prior to the event on October 4, 2008. Because precipitation in the Central and Southern San Joaquin Valley was minimal before the dust event, soils were dry enough to become entrained into the atmosphere during the high winds

Criteria 2. The National Weather Service in Hanford issued a Wind Advisory for the San Joaquin Valley.

Criteria 3. The afternoon surface weather maps showed a strong pressure gradient between Oakland and Las Vegas of +15 millibars (mb) over central California. This strong pressure gradient caused peak wind gusts at Hanford of 30 MPH at 1:53 PM PST and at Lemoore of 40 MPH at 10:56 AM and 3:56 PM PST.

Criteria 4. A moderately strong 110 MPH Jet-stream at 300 mb was positioned over California through the day transferring stronger winds toward the surface. 300 mb is located approximately 30,000 feet above ground level.

Criteria 5. The PM10 NAAQS was exceeded in Hanford, Corcoran, Oildale, and Bakersfield. The District forecast a NAAQS exceedance for Tulare, Kings, and the valley portion of Kern County, on October 9, 2008. A press release was issued on October 9, 2008 describing the high winds and blowing dust. The press release included the following, "Strong to gusty northwesterly winds across the San Joaquin Valley air basin are causing localized areas of blowing dust and elevated PM10 levels,"

NEAP Criteria - Meteorological Data:

The following meteorological information is presented to demonstrate that the NEAP meteorological flagging criteria were met.

Criteria 1 - No recent, measurable precipitation in the potential source region for fugitive dust

Precipitation data showed that the period preceding the blowing dust event was not wet enough in the Oildale/Bakersfield and Hanford/Corcoran area to limit blowing dust. Moisture content of soils is a very significant factor in a blowing dust event. Soils that have lower than normal moisture content during the driest time of the year would be more easily entrained by strong winds.

Precipitation

During the 139 consecutive days prior to the October 9, 2008 event, Bakersfield received no measurable precipitation. Hanford received 0.04 inches of precipitation 5 days prior to the event on October 4, 2008. Because precipitation in the Central and Southern San Joaquin Valley was minimal before the dust event, soils were dry enough to become entrained into the atmosphere during the high winds.

Figure B.1 is a map of annual precipitation for the San Joaquin Valley Air Basin. The map demonstrates that the west side of the Central and Southern San Joaquin Valley has the lowest annual precipitation of any area west of the desert areas of Owens Valley, Mojave Desert and Antelope Valley. Since the west side of Kern County has the lowest annual precipitation in the San Joaquin Valley, the undisturbed soils, on the average, are drier than other parts of the valley.

Figure B.1 Central California Annual Average Precipitation in Inches. The San Joaquin Valley Air Basin is outlined in black.

Criteria 2 – Wind Advisory issued by the National Weather Service

The National Weather Service in Hanford, CA issued a Wind Advisory at 11:02 AM PDT on October 9, 2008 to notify the public of gusty winds over the west side of the San Joaquin Valley and surrounding mountains and deserts (see Figure B.2). The National Weather Service in Sacramento, CA issued a Special Weather Statement at 5:11 AM PDT on October 9, 2008 to notify the public of gusty winds throughout the northern San Joaquin Valley (see Figure B.3).

Figure B.2 Wind Advisory issued by the National Weather Service in Hanford, CA on October 9, 2008.

URGENT - WEATHER MESSAGE NATIONAL WEATHER SERVICE SAN JOAQUIN VALLEY - HANFORD CA 1102 AM PDT THU OCT 9 2008

...GUSTY WINDS HAVE DEVELOPED OVER THE WEST SIDE OF THE SAN

JOAQUIN VALLEY THIS MORNING WHICH WILL CONTINUE THROUGH 11 PM THIS EVENING...

.A STRONG LOW PRESSURE SYSTEM AND ASSOCIATED COLD FRONT WAS BRINGING GUSTY NORTHWEST WINDS TO THE WESTERN SIDE OF THE SAN JOAQUIN VALLEY THIS MORNING AND WILL CONTINUE UNTIL LATE TONIGHT. GUSTS TO AROUND 45 MPH ARE POSSIBLE OVER WEST SIDE OF THE VALLEY.

CAZ095-098-099-100215-/O.CON.KHNX.WI.Y.0025.081009T2000Z-081011T0600Z/ KERN COUNTY MOUNTAINS-INDIAN WELLS VALLEY-SOUTHEASTERN KERN COUNTY DESERT-1102 AM PDT THU OCT 9 2008

...WIND ADVISORY REMAINS IN EFFECT UNTIL 11 PM PDT FRIDAY FOR THE KERN COUNTY MOUNTAINS AND DESERTS...

A WIND ADVISORY FOR THE KERN COUNTY MOUNTAINS AND DESERTS REMAINS IN EFFECT UNTIL 11 PM PDT FRIDAY.

WEST WINDS OF 20 TO 30 MPH ARE EXPECTED OVER THE KERN COUNTY MOUNTAINS AND DESERTS BEGINNING EARLY THIS AFTERNOON. GUSTS TO AROUND 50 MPH ARE POSSIBLE THROUGH AND BELOW THE PASSES AND CANYONS. THE GUSTY WINDS WILL LIKELY DIMINISH SOME LATE TONIGHT INTO FRIDAY MORNING...BUT ARE EXPECTED TO INCREASE AGAIN DURING THE DAY ON FRIDAY AND CONTINUE INTO THE EVENING.

MAJOR ROADS AFFECTED BY THE WINDS WILL INCLUDE HIGHWAY 58 THROUGH AND BELOW THE TEHACHAPI PASS...HIGHWAY 178 THROUGH THE WALKER PASS...AND HIGHWAY 14 AND U.S. 395 IN THE KERN COUNTY DESERTS.

A WIND ADVISORY MEANS THAT SUSTAINED WIND SPEEDS OF AT LEAST 35 MPH OR GUSTS OF 45 MPH OR MORE ARE EXPECTED. WINDS THIS STRONG CAN MAKE DRIVING DIFFICULT...ESPECIALLY FOR HIGH PROFILE VEHICLES. USE EXTRA CAUTION.

STAY TUNED TO NOAA WEATHER RADIO...OR YOUR FAVORITE NEWS SOURCE... FOR FURTHER INFORMATION.

Figure B.3 Special Weather Statement issued by the National Weather Service in Sacramento, CA on October 9, 2008.

SPECIAL WEATHER STATEMENT NATIONAL WEATHER SERVICE SACRAMENTO CA 511 AM PDT THU OCT 9 2008

CAZ013>019-063-064-066>069-100015-SHASTA LAKE AREA / NORTHERN SHASTA COUNTY-BURNEY BASIN / EASTERN SHASTA COUNTY-NORTHERN SACRAMENTO VALLEY-CENTRAL SACRAMENTO VALLEY-SOUTHERN SACRAMENTO VALLEY-CARQUINEZ STRAIT AND DELTA-NORTHERN SAN JOAQUIN VALLEY-MOUNTAINS SOUTHWESTERN SHASTA COUNTY TO NORTHERN LAKE COUNTY-CLEAR LAKE/SOUTHERN LAKE COUNTY-NORTHEAST FOOTHILLS/SACRAMENTO VALLEY-MOTHERLODE- WESTERN PLUMAS COUNTY/LASSEN PARK-WEST SLOPE NORTHERN SIERRA NEVADA-511 AM PDT THU OCT 9 2008

...GUSTY WINDS AND MUCH COOLER TEMPERATURES EXPECTED TODAY THROUGH THE WEEKEND...

A COLD LOW PRESSURE SYSTEM DROPPING OUT OF WESTERN CANADA INTO NEVADA WILL BRING GUSTY WINDS AND MUCH COOLER WEATHER TO NORTHERN CALIFORNIA THIS AFTERNOON THROUGH THE WEEKEND. AS THE STORM APPROACHES...WINDY CONDITIONS ARE EXPECTED TO DEVELOP THIS AFTERNOON AND CONTINUE INTO THE EVENING OVER THE COASTAL RANGE AND SACRAMENTO VALLEY. SUSTAINED WINDS TO 25 MPH WITH GUSTS TO 40 MPH ARE POSSIBLE BY MID AFTERNOON. TEMPERATURES WILL COOL 5-10 DEGREES TODAY IN THE NORTHERN CENTRAL VALLEY...WITH EVEN GREATER COOLING IN THE MOUNTAINS.

THE MAIN WEATHER SYSTEM IS FORECAST TO MOVE INTO THE GREAT BASIN ON FRIDAY...BRINGING FURTHER COOLING TO THE REGION. DAYTIME MAXIMUM TEMPERATURES IN THE SACRAMENTO AND NORTHERN SAN JOAQUIN VALLEYS ARE ONLY EXPECTED TO CLIMB INTO THE MID 60S TO LOWER 70S...WITH MOUNTAIN TEMPERATURES ONLY MAKING IT INTO THE 40S AND LOWER 50S. OVERNIGHT LOWS WILL DROP INTO THE 40S IN THE CENTRAL VALLEY...WITH LOWS IN THE 20S AND 30S IN THE MOUNTAINS...AND SOME TEENS POSSIBLE IN THE HIGHER MOUNTAIN VALLEYS.

GUSTY NORTH WINDS WILL CONTINUE INTO THE WEEKEND...WITH WINDY CONDITIONS AT TIMES. NORTH WINDS OF 15 TO 30 MPH ARE EXPECTED IN THE SACRAMENTO VALLEY LATE TONIGHT THROUGH SATURDAY WITH WIND GUSTS TO 40 MPH POSSIBLE. STRONGER WINDS ARE POSSIBLE AGAIN ON FRIDAY AFTERNOON.

ALTHOUGH SIGNIFICANT PRECIPITATION OVER THE MOUNTAINS IS NOT EXPECTED WITH THIS SYSTEM...A LIGHT DUSTING OF SNOW WILL BE POSSIBLE ABOVE 4000 FEET NEAR THE CREST OF THE SOUTHERN CASCADES AND NORTHERN SIERRA TONIGHT INTO SATURDAY.

A WARMING TREND ALONG WITH LIGHTER NORTH WINDS ARE EXPECTED ON SUNDAY INTO EARLY NEXT WEEK.

^{\$\$} Criteria 3 and 4 - Strong winds

As shown in Table 2 and 3, strong gusty winds occurred in Hanford and Lemoore during the October 9, 2008 blowing dust event. Observations at Bakersfield Meadows Field Airport on October 9 indicate 0 hour of sustained winds greater than 17.9 mph and 0 hour with gusts greater than 23 mph. The strong winds to the northwest of Bakersfield transported and deposited PM10 across the southern parts of the San Joaquin Valley. Observations at Lemoore Naval Air Station on October 9 indicate 13 hours of sustained winds greater than 17.9 mph and 9 hours with gusts greater than 31 mph. The highest recorded gust was 40 mph. Observations at Hanford on October 9 indicate 6 hours of sustained winds greater than 17.9 mph and 9 hours with gusts greater than 23 mph. The highest recorded gust was 30 mph. One hour of missing wind data occurred at Hanford on October 9. The high wind event resulted in entrainment of dust and reports of blowing dust throughout the San Joaquin Valley. Television news coverage and

Compliance Inspector visual reports from October 9, 2008 documented the high winds with video footage, photographs, and eyewitness reports.

Wind profiles documenting strong winds aloft in the San Joaquin Valley on October 9, 2008 are provided in the appendix.

Surface weather maps for the event are provided in the Appendix. Closely packed isobars, which are indicators of strong surface winds, are evident on these maps.

Criteria 5 – PM10 level is forecast to be above the NAAQS

The District issued a press release on October 9 at 2:10 PM PDT highlighting elevated PM10 levels due to high winds. The agricultural burn allocation was set to 0 tons of PM10 on October 9, 2008 in anticipation of high PM10 concentrations.

FIGURE B. 4 District press release on october 9, 2008 for blowing dust.

News Release 10-09-2008 For Immediate Release

TO: Local News, Health and Weather sections

North District Media Contact - Modesto Anthony Presto (209) 557-6400

Central District Media Contact - Fresno Janelle Schneider (559) 230-6000

South District Media Contact - Bakersfield Brenda Turner (661) 326-6900

Spanish-language Contact Claudia Encinas (559) 230-6000

Blowing dust prompts health warning Air District cautions that air pollution levels climbing

Gusty winds in the San Joaquin Valley have prompted local air-pollution officials to issue a health cautionary statement from Thursday afternoon through Friday evening.

Winds in the San Joaquin Valley may produce areas of blowing dust in the San Joaquin Valley through Friday evening. Blowing dust can result in unhealthy concentrations of particulate matter 10 microns and smaller, or PM10.

"Strong to gusty northwesterly winds across the San Joaquin Valley air basin are causing localized areas of blowing dust and elevated PM 10 levels," said Shawn Ferreria, Senior Air

Quality Specialist with the Air District. "Take precautions to protect your health if you are in an area experiencing blowing dust."

Exposure to particle pollution can cause serious health problems, aggravate lung disease, cause asthma attacks and acute bronchitis, and increase risk of respiratory infections. In people with heart disease, short-term exposure to particle pollution has been linked to heart attacks and arrhythmias, according to the U.S. Environmental Protection Agency.

Residents throughout the San Joaquin Valley are advised to use caution through Friday evening. People with heart or lung diseases should follow their doctors' advice for dealing with episodes of unhealthy air quality. Additionally, older adults and children should avoid prolonged exposure, strenuous activities or heavy exertion. Everyone else should reduce prolonged exposure, strenuous activities or heavy exertion.

The Valley Air District covers eight counties including San Joaquin, Stanislaus, Merced, Madera, Fresno, Kings, Tulare and the San Joaquin Valley air basin portion of Kern. For more information, visit <u>www.valleyair.org</u> or call the nearest District office: Modesto (209) 557-6400, Fresno (559) 230-6000 and Bakersfield (661) 326-6900.

Figure B.5 Air Quality Alert Message

AIR QUALITY ALERT MESSAGE SAN JOAQUIN VALLEY AIR POLLUTION CONTROL DISTRICT RELAYED BY NATIONAL WEATHER SERVICE SAN JOAQUIN VALLEY CA 215 PM PDT THU OCT 9 2008

THE SAN JOAQUIN VALLEY AIR POLLUTION CONTROL DISTRICT HAS ISSUED AN AIR QUALITY ALERT FOR THE VALLEY PORTIONS OF FRESNO...KERN... KINGS...MADERA...MERCED...AND TULARE COUNTIES THROUGH TONIGHT DUE TO BLOWING DUST CAUSED BY WINDY CONDITIONS.

EXPOSURE TO PARTICLE POLLUTION CAN CAUSE SERIOUS HEALTH PROBLEMS...AGGRAVATE LUNG DISEASE...CAUSE ASTHMA ATTACKS AND ACUTE BRONCHITIS AND INCREASE RISK OF RESPIRATORY INFECTIONS. IN PEOPLE WITH HEART DISEASE...SHORT-TERM EXPOSURE TO PARTICLE POLLUTION HAS BEEN LINKED TO HEART ATTACKS AND ARRHYTHMIAS... ACCORDING TO THE U.S. ENVIRONMENTAL PROTECTION AGENCY. CHILDREN AND ELDERLY PEOPLE ARE ALSO MORE SUSCEPTIBLE TO CONSEQUENCES OF HIGH PARTICULATE LEVELS.

APPENDIX C: Media Coverage

C1. Newspaper Articles and Television News Coverage from October 9, 2008

Blowing dust prompts health warning

By Sentinel Staff Hanford Sentinel, Friday, Oct. 10, 2008

FRESNO -- Gusty winds throughout the San Joaquin Valley on Thursday prompted local air-pollution officials to issue a health cautionary statement through tonight.

Winds throughout the Central Valley produced pockets of blowing dust, particularly on the Westside along the Interstate 5 route in Fresno and Kings counties. Blowing dust can result in unhealthy concentrations of particulate matter 10 microns or smaller, or PM10, according to the San Joaquin Valley Air Pollution Control District.

Valley residents were urged to use caution today and tonight, particularly people with heart or lung diseases, and older adults along with children should avoid prolonged exposure or outside activities.

Temperatures dropped in the Valley with the arrival of a cold front, and high temperatures were expected to drop into the upper 60s today and Saturday. No rain was in the forecast, however, and high temperatures were expected to climb back into the low 80s by early next week.

Blowing dust prompts health warning

BY EMILY HAGEDORN, Californian staff writer Bakersfield Californian, Friday, Oct. 10, 2008

Wind and dust mean two things on the valley floor of Kern County — a high concentration of particulate matter and heightened risk of valley fever.

And Thursday had both of them.

The San Joaquin Valley Air Pollution Control District issued a health caution Thursday — lasting through Friday evening — alerting residents of a high level of particulate matter being blown with the dust.

Blowing dust can result in concentrations of particulate matter 10 microns and smaller, or PM10, which can aggravate lung disease, increase risk of respiratory infections and cause asthma attacks and acute bronchitis, the statement said.

The wind reached about 10 mph in Bakersfield Thursday, said Brenda Turner, spokeswoman for the district. The fastest winds were experienced north of Bakersfield in Lemoore, with 36 mph gusts.

Agricultural harvesting and a lack of rain have led to more dust, she said.

"It's just not a good situation," Turner said.

Wind and dust can also contribute to more cases of valley fever, an infection picked up from a fungus found in Kern's soil, said Dr. Portia Choi, deputy health officer with the county Public Health Services Department.

Roughly 60 percent of people infected have no symptoms; 40 percent have cold- or flu-like symptoms.

The rarest and most severe cases cause nodules, ulcers, lesions in the skin and bones, swollen joints, meningitis and even death.

"We're in what is considered a highly endemic area" for valley fever, Choi said. "On windy days, you have to take precautions because the spores will be in the soil."

To guard against breathing in particulate matter and valley fever spores:

- Avoid prolonged outdoor exposure and staying inside.
- Avoid strenuous activity and heavy exertion.
- Wear masks when outdoors.
- Drive with windows closed.
- Keep windows closed in homes.
- Change clothes and shower after being outside in dusty conditions.
- After the wind dies, wet and clean dust collected on window ledges or porches.

APPENDIX D: District Compliance Department Coverage

D1. Photographs from October 9, 2008

Between Hanford and Corcoran

South Fresno area

South Fresno area

South Fresno area

Image from Compliance Video Footage (East Fresno area)

D2. Routine Compliance Inspections on October 9, 2008

A total of 57 inspections were conducted.

ActivityDate	Activity	ProjectType	Region
10/9/2008	Initial Inspections	Minor Sources	Ν
10/9/2008	Initial Inspections	Minor Sources	Ν
10/9/2008	Initial Inspections	Minor Sources	Ν
10/9/2008	Initial Inspections	Minor Sources	Ν
10/9/2008	Initial Inspections	Minor Sources	Ν
10/9/2008	Initial Inspections	Minor Sources	S
10/9/2008	Initial Inspections	Minor Sources	Ν
10/9/2008	Initial Inspections	Minor Sources	S
10/9/2008	Initial Inspections	Minor Sources	S
10/9/2008	Initial Inspections	Minor Sources	S
10/9/2008	Initial Inspections	Minor Sources	S
10/9/2008	Initial Inspections	Minor Sources	С
10/9/2008	Initial Inspections	Gasoline Dispensing Facilities	С
10/9/2008	Initial Inspections	Minor Sources	С
10/9/2008	Initial Inspections	Automotive Coating Operations	Ν
10/9/2008	Initial Inspections	Minor Sources	С
10/9/2008	Initial Inspections	Gasoline Dispensing Facilities	S
10/9/2008	Initial Inspections	Minor Sources	С
10/9/2008	Initial Inspections	Minor Sources	Ν
10/9/2008	Initial Inspections	Minor Sources	S
10/9/2008	Initial Inspections	Minor Sources	С
10/9/2008	Initial Inspections	Grant Program Inspections Ag	Ν

10/9/2008	Initial Inspections	Minor Sources	Ν
10/9/2008	Initial Inspections	Minor Sources	Ν
10/9/2008	Initial Inspections	Minor Sources	S
10/9/2008	Initial Inspections	Minor Sources	S
10/9/2008	Initial Inspections	Gasoline Dispensing Facilities	S
10/9/2008	Initial Inspections	Gasoline Dispensing Facilities	S
10/9/2008	Initial Inspections	Minor Sources	С
10/9/2008	Initial Inspections	Minor Sources	Ν
10/9/2008	Initial Inspections	Minor Sources	Ν
10/9/2008	Initial Inspections	Automotive Coating Operations	Ν
10/9/2008	Ongoing/Other Insp	Minor Sources	Ν
10/9/2008	Ongoing/Other Insp	Grant Program	S
10/9/2008	Follow Up	Gasoline Dispensing Facilities	С
10/9/2008	Follow Up	Gasoline Dispensing Facilities	С
10/9/2008	Follow Up	Gasoline Dispensing Facilities	Ν
10/9/2008	Follow Up	Gasoline Dispensing Facilities	С
10/9/2008	Follow Up	Minor Sources	С
10/9/2008	Follow Up	Minor Sources	С
10/9/2008	Follow Up	Gasoline Dispensing Facilities	С
10/9/2008	Follow Up	Gasoline Dispensing Facilities	С
10/9/2008	Follow Up	Minor Sources	С
10/9/2008	Follow Up	Minor Sources	С
10/9/2008	Follow Up	Gasoline Dispensing Facilities	S
10/9/2008	Startup inspections	Gasoline Dispensing Facilities	С
10/9/2008	Startup inspections	Gasoline Dispensing Facilities	С
10/9/2008	Startup inspections	Gasoline Dispensing Facilities	Ν
10/9/2008	Startup inspections	Gasoline Dispensing Facilities	Ν
10/9/2008	Startup inspections	Gasoline Dispensing Facilities	S
10/9/2008	Startup inspections	Minor Sources	С
10/9/2008	Startup inspections	Minor Sources	S
10/9/2008	Startup inspections	Minor Sources	С
10/9/2008	Startup inspections	Minor Sources	С
10/9/2008	Startup inspections	Minor Sources	С
10/9/2008	Startup inspections	Minor Sources	С
10/9/2008	Startup inspections	Automotive Coating Operations	Ν

APPENDIX E: Weather Analysis

E1. Wind Profiles

Time in UTC (Coordinated Universal Time, also abbreviated with "Z" or "GMT") is also called Greenwich Mean Time (Mean Solar Time at the Royal Observatory in Greenwich, England). Greenwich Mean Time is seven hours ahead of Pacific Daylight Time (PDT). For example, 12 UTC or 12 Z is 4 AM PST or 5 AM PDT. The lower air profilers were located in Tracy, Chowchilla, and Lost Hills.

Wind barbs point in the direction "from" which the wind is blowing. A circle represents calm conditions. Flags (straight lines) attached at the end of the wind barbs indicate wind speed. Each short flag represents 5 knots, and each long flag represents 10 knots. A long flag and a short flag represent 15 knots, simply by adding the value of each flag together (10 knots + 5 knots = 15 knots). The color-coded speed scale is also provided on top of the plot. A triangular flag at the end of a wind barb represents a 50-knot wind. This wind barb is color-coded orange in the plot shown above.

915 MHz Profiler: Tracy, CA — Low Mode Data courtesy San Joaquin Valley Unified Air Pollution Control District

Τv	(deg (C): <mark><1</mark>	2	4	6	8	10	12	14	16	- 18	20	-22	-24	26	>27
	1800	Γ 4	4		64	¢ €	166		404		10	<i>i</i>	6 0	e e e e	. 4 4 6	646
	1700	⊢`¢	r e e		11	\ \ &	111	~~~~	111	~ ~ ~ ~	(Y)	۲ 66	\\ 466	1111	\ \ \ ? e Ø Ø	1 \ F F F
	1600	-66	11	б	() 66	\ 6 е	\ { :@EE		Ì.,	\ \ \ 6 6	666	81 1666	\\{ ¢86	{ { \ \ 6666	111 9444	111 666
	1500	11		۲ ۲	11	\ EEE	111 8666			(\ ¢	177	(T)) 1666	\\[666	1111	(\ \ \ 56668	111 FEE
	1400	11	¢	5 L 6 6 6	11 5 6 6	111 666	111 6666			۱ 64 (177 8228	111	111 666	111 6666	(5666) (EEE
\subseteq	1300) 18686	5555 1900	۱۱ ۶666	r 1 r 6 6	' 6	EE	66	1 1 66 (1 (((8 & & & &	111	111 666	1111 6666	1 8666) 666
\mathcal{O}	1200	1 - 666	1111 66666	(T [] 5 5 6 6	111 1666	11 66	۱ چ	 FFF	۱۱ ۴66	() 666)	((() 8666	. \ \ \ E E E	111 666	1111 6666	() 8666	155 666
\geq	1100	111	1111 16666	1111 18666	111 1966	11 666	r # 6	511 E	111 Eee	111 666	5 1 1 1 8 6 6 6 6	. \ \ \ ``\$`\$\$	111 FFF	1111 4444	1717 7866	177 666
Ę	1000	-666	((() ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	(「「「」 19日日日日	() 6666	1 (6 6 6	۱ ا ا	(666	() 666	()) 666	1 1 1 1 ÞØØØ	. \ \ \ ####	111 FFF	1 1 1 1 8 8 8 8	1111 1 F E E	111 666
7	900	- 644	1111	「171 多日日日	1 1 1 3 15 16 16	1 I I 666	់ខ្ខេ ខ្ខែខ្	1 I I 66	(() ØØØ	1 1 1 FFF	1 1 1 1 F Ø Ø Ø		() FFF	1 () ' F F F F	1111 1986))) 6 臣臣
a	800	- # # #		1 1 1 1 1 6 6 6 6	111	100	11 5日日日	() 译 译	111 666	1 ነ ነ ኖኖኖ፣	1 1 1 1 F F F F	· · · · ·	111 888	1 1 1 1 F F F F	1111	いいの
ੁੱ	700	- 4 4 4	4449		\$\$\$\$	())		F F		በ በ የ ም ም የ	, , , , F F F F	***	FFF	FRFF	1999	FFF.
Ę	600		***		***	÷;	***	ÈFF	ÈÈÈ	, FFF	, , , , F F F F	****	ÉÉÉ	FFFF		666
Ŧ	500		****		***	***	***		FFF	FFF		****	ÊÊÊ	FFFF		
4	400	- < < <	***	499	***	***	444	ŔŔŔ	666	ÊÉÊ		PFF	ÈÈÉ	FFFI	(((((((
	300		< < < <	444	***	÷ ((***		199	444		****	÷ ÷ ÷	FFF9	1999	199
	200	F														
	100	-														
	0	L														
	Hou	r: 14	13 12	11 10	0 09 ()8 01	7 06 (Ti	05 04	03 0	02 01	00 23	3 22 2	21 20	19-1	8 17	16
		Data	from	, na.	_ост	-20	ווו — תם 1	ne i 5730	thro	uab	10-0	анс ЭСТ—1	2008	14.7	O UT	-
		Image	gener	ated	by D	epar	tment	. of	Meteo	prolog	y, No	ival F	ostai,	aduat	e Sch	1001

<--- Time Increases to Left Data from 09-OCT-2008 16:09 through 10-OCT-2008 16:09 UTC

Image generated by Department of Meteorology, Naval Postgraduate School

E2. Weather Charts

Upper-air analysis (approximately 18,000 feet above ground level) on October 9 and 10, 2008

The upper air analysis showed an unseasonably strong trough over the Pacific Northwest. Strong winds were evident on the trough axis over northern California.

Surface Analysis on October 9, 2008

The surface analysis charts from October 9, 2008 showed packed isobars, which indicated strong winds over the San Joaquin Valley.

Surface Analysis on October 9, 2008

Surface Analysis on October 9, 2008

Surface Analysis on October 10, 2008

E3. Surface Observations

Past Weather Conditions for KFAT

Tabular Listing: October 8, 2008 - 23:00 through October 09, 2008 - 23:00 PDT

Time(PDT) Temperaturo	e Dew	Wet Bulb	Relative	Wind	Wind	Wind	Quality	Pressure	Sea level	Altimeter	1500 m	Weather	Visibility
		Point 7	Femperature	Humidity	Speed	Gust	Direction	check		pressure		Pressure	conditions	
	° F	° F	° F	%	mph	mph			in	in	in	in		miles
22:53	57.0	23.0	42.8	27	14		W	<u>OK</u>	29.52	29.87	29.88	24.94	clear	10.00
21:53	60.1	21.9	44.1	23	10		WNW	<u>OK</u>	29.52	29.87	29.88	24.94	clear	10.00
20:53	63.0	19.9	45.0	19	15		WNW	<u>OK</u>	29.50	29.85	29.86	24.92	clear	10.00
19:53	64.9	17.1	45.4	16	16		WNW	<u>OK</u>	29.49	29.84	29.85	24.91	clear	10.00
18:53	68.0	18.0	47.0	15	21	30	WNW	<u>OK</u>	29.48	29.84	29.84	24.90	clear	10.00
17:53	72.0	21.0	49.5	15	21	32	NW	<u>OK</u>	29.48	29.83	29.84	24.90	clear	10.00
16:53	75.0	24.1	51.5	15	20	26	NW	<u>OK</u>	29.48	29.83	29.84	24.90	clear	9.00
15:53	77.0	27.0	53.0	16	23	29	NW	<u>OK</u>	29.48	29.83	29.84	24.90	clear	9.00
14:53	79.0	28.9	54.3	16	18	25	NW	<u>OK</u>	29.49	29.84	29.85	24.91	mostly clear	7.00
13:53	78.1	34.0	55.3	20	17	29	NW	<u>OK</u>	29.50	29.85	29.86	24.92	mostly clear	10.00
12:53	75.9	41.0	56.7	29	16	26	NW	<u>OK</u>	29.53	29.88	29.89	24.94	mostly clear	10.00
11:53	73.0	44.1	56.8	35	15		WNW	<u>OK</u>	29.54	29.89	29.90	24.95	clear	10.00
10:53	70.0	45.0	55.9	41	12		NW	<u>OK</u>	29.54	29.90	29.90	24.95	clear	10.00
9:53	66.0	46.0	54.8	49	14		WNW	<u>OK</u>	29.54	29.89	29.90	24.95	clear	10.00
8:53	62.1	46.0	53.2	56	13		WNW	<u>OK</u>	29.53	29.88	29.89	24.94	clear	10.00
7:53	60.1	45.0	51.9	57	12		NW	<u>OK</u>	29.52	29.87	29.88	24.94	clear	10.00
6:53	59.0	45.0	51.4	60	9		NW	<u>OK</u>	29.51	29.86	29.87	24.93	mostly clear	10.00
5:53	60.1	46.9	52.8	62	7		NW	<u>OK</u>	29.49	29.84	29.85	24.91	clear	10.00
4:53	57.9	48.9	52.9	72	5		NW	<u>OK</u>	29.48	29.83	29.84	24.90	clear	10.00
3:53	59.0	48.0	52.9	67	0			<u>OK</u>	29.48	29.83	29.84	24.90	clear	10.00
2:53	61.0	48.9	54.1	64	0			<u>OK</u>	29.49	29.83	29.85	24.91	clear	10.00
1:53	62.1	48.0	54.1	60	0			<u>OK</u>	29.49	29.83	29.85	24.91	clear	10.00
0:53	64.9	48.0	55.3	54	0			<u>OK</u>	29.48	29.83	29.84	24.90	clear	10.00
23:53	66.9	48.9	56.5	52	0			<u>OK</u>	29.50	29.85	29.86	24.92	clear	10.00
22:53 Source:	70.0 University	48.0 of Utah	57.3 n MesoWe	46 st	0			<u>OK</u>	29.50	29.84	29.86	24.92	clear	10.00
Past Weather Conditions for KFAT

Tabular Listing: October 10, 2008 - 0:00 through October 11, 2008 - 00:00 PDT

Time(PDT)) Temperature	Dew	Wet Bulb	Relative	Wind	Wind	Wind	Quality	Pressure	Sea level	Altimeter	1500 m	Weather	Visibility
		Point 7	Femperature	Humidity	Speed	Gust	Direction	check		pressure		Pressure	conditions	
	°F	° F	° F	%	mph	mph			in	in	in	in		miles
23:53	51.1	25.0	40.3	36	7		NNW	<u>OK</u>	29.45	29.80	29.80	24.87	clear	10.00
22:53	54.0	25.0	41.8	32	12		NW	<u>OK</u>	29.45	29.79	29.80	24.87	partly cloudy	10.00
21:53	55.0	26.1	42.6	32	10		WNW	<u>OK</u>	29.44	29.79	29.79	24.86	partly cloudy	10.00
20:53	55.9	26.1	43.0	31	12		W	<u>OK</u>	29.44	29.79	29.79	24.86	partly cloudy	10.00
19:53	57.9	24.1	43.5	27	13		W	<u>OK</u>	29.45	29.79	29.80	24.87	partly cloudy	10.00
18:53	59.0	21.0	43.3	23	10		W	<u>OK</u>	29.46	29.80	29.81	24.88	partly cloudy	10.00
17:53	61.0	18.0	43.6	19	14	24	WNW	<u>OK</u>	29.46	29.81	29.81	24.88	partly cloudy	10.00
16:53	63.0	17.1	44.5	17	20		NW	<u>OK</u>	29.47	29.81	29.82	24.88	mostly clear	10.00
15:53	64.0	19.9	45.6	18	18		WNW	<u>OK</u>	29.47	29.83	29.83	24.89	mostly clear	10.00
14:53	64.9	19.9	46.0	18	16	25	WNW	<u>OK</u>	29.48	29.84	29.84	24.90	mostly clear	10.00
13:53	64.9	19.0	45.8	17	21	26	WNW	<u>OK</u>	29.51	29.86	29.87	24.93	mostly clear	10.00
12:53	64.0	19.0	45.4	18	15		NW	<u>OK</u>	29.54	29.89	29.90	24.95	mostly clear	10.00
11:53	63.0	24.1	46.0	23	13	23	NNW	<u>OK</u>	29.56	29.91	29.92	24.97	mostly clear	10.00
10:53	57.9	27.0	44.3	30	10		NNW	<u>OK</u>	29.58	29.94	29.94	24.99	mostly clear	10.00
9:53	55.0	28.0	43.2	35	16		NW	<u>OK</u>	29.58	29.93	29.94	24.99	clear	10.00
8:53	52.0	28.0	41.6	39	14	22	NW	<u>OK</u>	29.58	29.93	29.94	24.99	clear	10.00
7:53	48.0	28.0	39.6	46	9		NW	<u>OK</u>	29.57	29.92	29.93	24.98	cloudy	10.00
6:53	48.0	28.0	39.6	46	8		NW	<u>OK</u>	29.55	29.91	29.91	24.96	clear	10.00
5:53	46.9	28.0	39.0	48	9		WNW	<u>OK</u>	29.55	29.91	29.91	24.96	clear	10.00
4:53	48.9	27.0	39.7	42	6		NNW	<u>OK</u>	29.54	29.89	29.90	24.95	clear	10.00
3:53	50.0	27.0	40.3	41	6		NW	<u>OK</u>	29.54	29.89	29.90	24.95	clear	10.00
2:53	50.0	27.0	40.3	41	8		WNW	<u>OK</u>	29.54	29.89	29.90	24.95	clear	10.00
1:53	52.0	26.1	41.1	36	6		NW	<u>OK</u>	29.55	29.90	29.91	24.96	clear	10.00
0:53	54.0	26.1	42.1	34	10		NW	<u>OK</u>	29.53	29.88	29.89	24.94	clear	10.00
23:53 Source:	55.0 University of	24.1 of Utał	42.1 n MesoWe	30 st	9		NW	<u>UK</u>	29.53	29.88	29.89	24.94	clear	10.00

Past Weather Conditions for KHJO

Tabular Listing: October 9, 2008 - 0:00 through October 10, 2008 - 00:00 PDT

Time(PDT) Temperature Dew Wet Bulb Relative Wind Wind Wind Quality Pressure Sea level Altimeter 1500 m Weather Visibility Point Temperature Humidity Speed Gust Direction check pressure Pressure conditions

		1 01110 1	emperature	inumunty	opeeu	Gust	Direction	cheek		pressure		I ressure	conditions	
	° F	° F	° F	%	mph	mph			in	in	in	in		miles
23:53	57.9	21.9	43.0	25	13		NW	<u>OK</u>	29.63	29.89	29.89	24.94	clear	10.00
22:53	57.9	21.0	42.8	24	8		NW	<u>OK</u>	29.63	29.89	29.89	24.94	clear	10.00
21:53	60.1	19.9	43.7	21	10		WNW	<u>OK</u>	29.63		29.89	24.94	clear	10.00
20:53	62.1	16.0	43.9	16	10		WNW	<u>OK</u>	29.61	29.88	29.87	24.93	clear	10.00
19:53	64.9	17.1	45.5	16	16	23	NW	<u>OK</u>	29.60	29.86	29.86	24.92	clear	8.00
18:53	68.0	21.0	47.7	17	15		NW	<u>OK</u>	29.60	29.86	29.86	24.92	haze	6.00
17:53	72.0	26.1	50.6	18	17		NW	<u>OK</u>	29.58	29.84	29.84	24.90	haze	3.00
16:53	75.9	28.9	53.0	18	15	25	NW	<u>OK</u>	29.58	29.84	29.84	24.90	haze	4.00
15:53	77.0	28.0	53.3	16	20	28	NW	<u>OK</u>	29.59	29.85	29.85	24.91	haze	5.00
14:53	79.0	33.1	55.4	19	18	26	NW	<u>OK</u>	29.59	29.85	29.85	24.91	haze	4.00
13:53	79.0	36.0	56.2	21	18	30	NW	<u>OK</u>	29.60	29.86	29.86	24.92	haze	4.00
12:53	75.9	41.0	56.7	29	18	25	NW	<u>OK</u>	29.63	29.89	29.89	24.94	haze	4.00
11:53	73.9	43.0	56.7	33	20	24	NNW	<u>OK</u>	29.64	29.90	29.90	24.95	haze	5.00
10:53	70.0	44.1	55.6	39	16	23	NW	<u>OK</u>	29.65	29.91	29.91	24.96	haze	5.00
9:53								<u>OK</u>	29.64		29.90	24.95		
8:53	63.0	45.0	53.1	52	18	25	NW	<u>OK</u>	29.63	29.89	29.89	24.94	clear	10.00
7:53	57.9	46.9	51.9	67	12		NW	<u>OK</u>	29.61	29.87	29.87	24.93	clear	10.00
6:53	59.0	46.0	51.9	62	9		NW	<u>OK</u>	29.60	29.86	29.86	24.92	clear	10.00
5:53	57.9	46.9	51.9	67	6		WNW	<u>OK</u>	29.59	29.85	29.85	24.91	clear	10.00
4:53	55.0	46.9	50.6	74	3		NW	<u>OK</u>	29.58	29.84	29.84	24.90	clear	10.00
3:53	53.1	48.0	50.3	83	0			<u>OK</u>	29.57	29.83	29.83	24.89	clear	10.00
2:53	54.0	48.0	50.7	80	0			<u>OK</u>	29.59	29.85	29.85	24.91	clear	10.00
1:53	59.0	48.0	52.9	67	0			<u>OK</u>	29.59	29.85	29.85	24.91	clear	10.00
0:53	64.9	46.9	54.8	52	6		NW	<u>OK</u>	29.59	29.85	29.85	24.91	clear	10.00
23:53	64.9	48.9	55.7	56	5		NW	<u>OK</u>	29.60	29.86	29.86	24.92	clear	10.00
Source:	University	of Utah	MesoWe	st										

Past Weather Conditions for KHJO

Tabular Listing: October 10, 2008 - 0:00 through October 11, 2008 - 00:00 PDT

Time(PDT)) Temperatur	e Dew	Wet Bulb	Relative	Wind	Wind	Wind	Quality	Pressure	level	Altimeter	1500 m	Weather	Visibility
		Point 7	Femperature	Humidity	Speed	Gust	Direction	check		pressure		Pressure	conditions	
	° F	°F	° F	%	mph	mph			in	in	in	in		miles
23:53	53.1	26.1	41.6	35	9		NW	<u>OK</u>	29.55	29.81	29.81	24.88	clear	10.00
22:53	55.0	26.1	42.6	32	17		WNW	<u>OK</u>	29.54	29.80	29.80	24.87	clear	10.00
21:53	55.9	25.0	42.8	30	15		WNW	<u>OK</u>	29.54	29.81	29.80	24.87	clear	10.00
20:53	55.0	25.0	42.3	31	8		W	<u>OK</u>	29.55	29.81	29.81	24.88	clear	10.00
19:53	55.9	24.1	42.5	29	8		WNW	<u>OK</u>	29.55	29.82	29.81	24.88	clear	10.00
18:53	57.9	21.9	43.0	25	14		NW	<u>OK</u>	29.56	29.83	29.82	24.89	clear	10.00
17:53	61.0	19.0	43.9	20	22	25	NW	<u>OK</u>	29.56	29.82	29.82	24.89	mostly cloudy	9.00
16:53	63.0	19.9	45.1	19	20	26	NNW	<u>OK</u>	29.56	29.83	29.82	24.89	overcast	10.00
15:53	66.0	19.9	46.5	17	17	25	NNW	<u>OK</u>	29.57	29.83	29.83	24.89	clear	7.00
14:53	66.0	17.1	46.0	15	18	28	NNW	<u>OK</u>	29.58	29.84	29.84	24.90	clear	8.00
13:53	66.0	21.0	46.8	18	16	26	NNW	<u>OK</u>	29.61	29.87	29.87	24.93	clear	9.00
12:53	64.9	23.0	46.7	20	16	23	NW	<u>OK</u>	29.65	29.91	29.91	24.96	clear	9.00
11:53	63.0	27.0	46.8	25	9	20	NW	<u>OK</u>	29.67	29.93	29.93	24.98	clear	10.00
10:53	60.1	28.0	45.7	29	16	25	NW	<u>OK</u>	29.68	29.94	29.94	24.99	clear	8.00
9:53	57.0	28.9	44.5	34	20	26	NW	<u>OK</u>	29.68	29.95	29.94	24.99	clear	9.00
8:53	53.1	30.0	42.8	41	9		NW	<u>OK</u>	29.68	29.95	29.94	24.99	clear	10.00
7:53	50.0	28.9	40.9	44	10		NNW	<u>OK</u>	29.67	29.93	29.93	24.98	clear	10.00
6:53	50.0	28.0	40.6	42	13		NW	<u>OK</u>	29.66	29.92	29.92	24.97	clear	10.00
5:53	50.0	28.0	40.6	42	10		NW	<u>OK</u>	29.65	29.91	29.91	24.96	clear	10.00
4:53	48.0	26.1	39.0	42	8		NW	<u>OK</u>	29.65	29.91	29.91	24.96	clear	10.00
3:53	50.0	26.1	40.0	39	8		NW	<u>OK</u>	29.64	29.90	29.90	24.95	clear	10.00
2:53	52.0	25.0	40.8	35	9		NNW	<u>OK</u>	29.64	29.90	29.90	24.95	clear	10.00
1:53	53.1	25.0	41.3	33	7		NNW	<u>OK</u>	29.65	29.91	29.91	24.96	clear	10.00
0:53	55.0	24.1	42.1	30	12		NW	<u>OK</u>	29.63	29.89	29.89	24.94	clear	10.00
23:53	57.9	21.9	43.0	25	13		NW	<u>OK</u>	29.63	29.89	29.89	24.94	clear	10.00
Source:	University	of Utah	n MesoWe	st										

Past Weather Conditions for KBFL

Tabular Listing: October 8, 2008 - 0:00 through October 09, 2008 - 00:00 PDT

Time(PDT) Temperature Dew Wet Bulb Relative Wind Wind Wind Quality Pressure Sea level Altimeter 1500 m Weather Visibility Point Temperature Humidity Speed Gust Direction check pressure Pressure conditions

			-	-	-				-				
	°F	° F	° F	%	mph	mph		in	in	in	in		miles
23:54	68.0	48.2	56.5	49	3	NE	<u>OK</u>	29.31	29.84	29.86	24.92	clear	10.00
22:54	71.1	48.9	58.1	45	0		<u>OK</u>	29.32	29.85	29.87	24.93	clear	10.00
21:54	73.0	48.9	58.8	43	0		<u>OK</u>	29.31	29.85	29.86	24.92	clear	10.00
20:54	73.0	48.9	58.8	43	5	ENE	<u>OK</u>	29.31	29.84	29.86	24.92	clear	10.00
19:54	75.9	48.9	59.9	39	3	NE	<u>OK</u>	29.32	29.85	29.87	24.93	clear	10.00
18:54	79.0	53.1	62.9	41	3	NNW	<u>OK</u>	29.32	29.85	29.87	24.93	clear	10.00
17:54	82.9	52.0	63.7	34	7	NW	<u>OK</u>	29.31	29.85	29.86	24.92	clear	10.00
16:54	84.0	52.0	64.1	33	8	WNW	<u>OK</u>	29.32	29.86	29.87	24.93	clear	10.00
15:54	84.9	53.1	64.9	34	9	NW	<u>OK</u>	29.33	29.86	29.88	24.93	clear	10.00
14:54	84.9	53.1	64.9	34	9	18 WNW	<u>OK</u>	29.34	29.87	29.89	24.94	clear	10.00
13:54	84.0	53.1	64.6	35	10	WNW	<u>OK</u>	29.36	29.89	29.91	24.96	clear	10.00
12:54	82.9	52.0	63.7	34	6		<u>OK</u>	29.40	29.93	29.95	24.99	clear	7.00
11:54	79.0	51.1	62.0	38	5		<u>OK</u>	29.43	29.96	29.98	25.02	clear	8.00
10:54	77.0	50.0	60.8	39	0		<u>OK</u>	29.45	29.98	30.00	25.04	clear	10.00
9:54	73.0	50.0	59.3	44	6	SSE	<u>OK</u>	29.47	30.00	30.02	25.05	clear	9.00
8:54	69.1	51.1	58.4	53	3	SSE	<u>OK</u>	29.47	30.00	30.02	25.05	clear	8.00
7:54	64.0	50.0	55.9	60	0		<u>OK</u>	29.47	30.00	30.02	25.05	clear	7.00
6:54	61.0	48.9	54.1	64	0		<u>OK</u>	29.46	29.99	30.01	25.04	clear	7.00
5:54	62.1	51.1	55.7	67	3	NW	<u>OK</u>	29.46	30.00	30.01	25.04	clear	8.00
4:54	62.1	50.0	55.1	65	0		<u>OK</u>	29.46	30.00	30.01	25.04	clear	9.00
3:54	66.9	50.0	57.0	55	0		<u>OK</u>	29.46	29.99	30.01	25.04	clear	10.00
2:54	66.9	50.0	57.0	55	0		<u>OK</u>	29.47	30.01	30.02	25.05	clear	10.00
1:54	66.9	50.0	57.0	55	3	Е	<u>OK</u>	29.49	30.03	30.04	25.07	clear	10.00
0:54	66.9	51.1	57.6	57	0		<u>OK</u>	29.50	30.03	30.05	25.08	clear	10.00
23:54	70.0	51.1	58.7	51	0		<u>OK</u>	29.51	30.04	30.06	25.09	clear	10.00
Courses 1	Iniversity	of Litoh	Maga\//	oot									

Source: University of Utah MesoWest

Past Weather Conditions for KBFL

Tabular Listing: October 9, 2008 - 0:00 through October 10, 2008 - 00:00 PDT

 Time(PDT) Temperature Dew Wet Bulb Relative Wind Wind Quality Pressure Sea level Altimeter 1500 m Weather Visibility

 Point Temperature Humidity Speed Direction check
 pressure
 Pressure conditions

			·	J	~				P = = = = = = = =				
	° F	°F	° F	%	mph			in	in	in	in		miles
23:54	54.0	21.9	41.0	28	0		<u>OK</u>	29.38	29.91	29.93	24.98	clear	10.00
22:54	54.0	24.1	41.5	31	7	NNW	<u>OK</u>	29.37	29.91	29.92	24.97	clear	9.00
21:54	61.0	21.9	44.5	22	8	W	<u>OK</u>	29.36	29.90	29.91	24.96	clear	8.00
20:54	63.0	26.1	46.4	24	9	WNW	<u>OK</u>	29.34	29.88	29.89	24.94	haze	6.00
19:54	66.0	30.9	49.2	27	10	NW	<u>OK</u>	29.32	29.86	29.87	24.93	haze	5.00
18:54	70.0	30.9	50.9	23	12	NW	<u>OK</u>	29.30	29.83	29.84	24.90	haze	5.00
17:54	75.0	36.0	54.6	24	12	NNW	<u>OK</u>	29.28	29.80	29.82	24.88	haze	5.00
16:54	77.0	42.8	57.7	30	10	NNW	<u>OK</u>	29.28	29.80	29.82	24.88	haze	6.00
15:54	77.0	44.6	58.4	32	13	NW	<u>OK</u>	29.29	29.82	29.83	24.89	haze	6.00
14:54	77.0	42.8	57.7	30	10	NW	<u>OK</u>	29.30	29.83	29.85	24.91	haze	3.00
13:54	75.9	44.1	57.8	32	10	WNW	<u>OK</u>	29.32	29.85	29.87	24.93	clear	7.00
12:54	73.9	44.1	57.1	34	9	WNW	<u>OK</u>	29.34	29.88	29.89	24.94	clear	7.00
11:54	73.0	45.0	57.1	37	13	NW	<u>OK</u>	29.36	29.89	29.91	24.96	clear	10.00
10:54	70.0	45.0	55.9	41	13	NW	<u>OK</u>	29.35	29.89	29.90	24.95	clear	10.00
9:54	68.0	46.4	55.7	46	9	WNW	<u>OK</u>	29.36	29.89	29.91	24.96	clear	10.00
8:54	68.0	46.4	55.7	46	14	NNW	<u>OK</u>	29.34	29.88	29.89	24.94	clear	10.00
7:54	62.1	48.0	54.1	60	7	Ν	<u>OK</u>	29.32	29.85	29.87	24.93	clear	8.00
6:54	63.0	48.9	54.9	60	0		<u>OK</u>	29.30	29.83	29.85	24.91	clear	10.00
5:54	62.1	48.9	54.5	62	5	SSE	<u>OK</u>	29.30	29.83	29.84	24.90	clear	9.00
4:54	64.9	51.1	56.8	61	7	SE	<u>OK</u>	29.29	29.82	29.83	24.89	clear	9.00
3:54	64.9	52.0	57.2	63	5	SE	<u>OK</u>	29.30	29.82	29.84	24.90	clear	9.00
2:54	66.0	52.0	57.6	61	0		<u>OK</u>	29.30	29.82	29.84	24.90	clear	9.00
1:54	64.0	48.9	55.3	58	3	NW	<u>OK</u>	29.30	29.83	29.85	24.91	clear	9.00
0:54	71.1	51.1	59.1	49	5	SE	<u>OK</u>	29.30	29.83	29.85	24.91	clear	10.00
23:54	68.0	48.2	56.5	49	3	NE	<u>OK</u>	29.31	29.84	29.86	24.92	clear	10.00
Source:	University	of Utah	MesoW	est									

Past Weather Conditions for KBFL

Tabular Listing: October 10, 2008 - 0:00 through October 11, 2008 - 00:00 PDT

Time(PDT) Temperatur	e Dew	Wet Bulb	Relative	Wind	Wind	Wind	Quality	Pressure	Sea level	Altimeter	1500 m	Weather	Visibility
		Point 7	ſemperature	Humidity	Speed	Gust	Direction	check		pressure		Pressure	conditions	
	° F	° F	° F	%	mph	mph			in	in	in	in		miles
23:54	50.0	21.2	38.7	32	5		ENE	<u>OK</u>	29.29	29.83	29.83	24.89	clear	10.00
22:54	52.0	24.1	40.5	33	0			<u>OK</u>	29.30	29.83	29.84	24.90	clear	10.00
21:54	54.0	23.0	41.2	30	5		W	<u>OK</u>	29.30	29.83	29.84	24.90	partly cloudy	10.00
20:54	55.9	21.9	41.9	26	12		NW	<u>OK</u>	29.29	29.82	29.83	24.89	mostly cloudy	10.00
19:54	57.9	23.0	43.2	26	12		WNW	<u>OK</u>	29.28	29.81	29.82	24.88	overcast	10.00
18:54	59.0	19.4	42.9	21	14		NNW	<u>OK</u>	29.26	29.80	29.80	24.87	clear	10.00
17:54	62.1	16.0	43.7	16	21		NNW	<u>OK</u>	29.24	29.78	29.78	24.85	clear	10.00
16:54	64.0	23.0	46.2	21	13	17	NW	<u>OK</u>	29.25	29.78	29.79	24.86	clear	10.00
15:54	64.9	24.1	46.8	21	13	22	NNW	<u>OK</u>	29.26	29.79	29.80	24.87	clear	10.00
14:54	64.0	24.1	46.4	22	6		NNW	<u>OK</u>	29.29	29.82	29.83	24.89	clear	10.00
13:54	63.0	25.0	46.2	23	8		WNW	<u>OK</u>	29.31	29.85	29.86	24.92	clear	10.00
12:54	62.1	27.0	46.3	26	7		Ν	<u>OK</u>	29.36	29.90	29.91	24.96	clear	10.00
11:54	59.0	26.6	44.7	29	3			<u>OK</u>	29.39	29.93	29.94	24.99	clear	10.00
10:54	57.0	28.0	44.1	33	3			<u>OK</u>	29.41	29.96	29.96	25.00	clear	10.00
9:54	55.9	27.0	43.3	33	6			<u>OK</u>	29.42	29.96	29.97	25.01	clear	10.00
8:54	52.0	27.0	41.3	38	3		W	<u>OK</u>	29.42	29.96	29.97	25.01	clear	10.00
7:54	50.0	26.6	40.2	40	6		WNW	<u>OK</u>	29.39	29.93	29.94	24.99	clear	10.00
6:54	46.9	19.0	36.5	33	0			<u>OK</u>	29.38	29.92	29.93	24.98	clear	10.00
5:54	48.9	21.9	38.3	34	0			<u>OK</u>	29.37	29.91	29.92	24.97	clear	10.00
4:54	51.1	21.9	39.4	32	3		Е	<u>OK</u>	29.36	29.90	29.91	24.96	clear	10.00
3:54	52.0	21.9	39.9	31	3		ESE	<u>OK</u>	29.36	29.89	29.91	24.96	clear	10.00
2:54	50.0	21.2	38.7	32	0			<u>OK</u>	29.37	29.91	29.92	24.97	clear	10.00
1:54	53.1	19.9	40.0	27	3		Е	<u>OK</u>	29.38	29.91	29.93	24.98	clear	10.00
0:54	54.0	21.9	40.9	28	0			<u>OK</u>	29.37	29.91	29.92	24.97	clear	10.00
23:54	54.0	21.9	41.0	28	0			<u>OK</u>	29.38	29.91	29.93	24.98	clear	10.00
Source:	University	of Utah	n MesoWe	st										

Sea Time(PDT) Temperature Dew Wet Bulb Relative Wind Wind Wind Altimeter 1500 m Weather Visibility Quality Pressure level Point Temperature Humidity Speed Gust Direction check pressure Pressure conditions °F °F °F % mph mph in in in in miles blowing 23:56 NW 62.1 18.0 44.2 18 21 Caution 29.64 29.89 29.89 24.94 6.00 dust blowing 22:56 62.1 16.0 43.9 16 17 NW Caution 29.64 29.89 29.89 24.94 6.00 dust blowing 21:56 63.0 15.1 44.1 15 23 NW Caution 29.63 29.88 29.88 24.94 6.00 dust blowing 20:56 29.62 29.87 29.87 24.93 62.1 12.9 43.3 14 15 NW OK 6.00 dust blowing 29.63 29.88 29.88 24.94 19:56 64.0 15.1 44.7 15 18 NW OK 5.00 dust blowing 18:56 66.9 12.9 45.7 12 20 NW OK 29.62 29.87 29.87 24.93 5.00 dust blowing 17:56 12 35 NW OK 29.60 29.85 29.85 24.91 71.1 15.148.0 24 5.00 dust blowing 40 29.60 29.85 29.85 24.91 16:56 75.0 21.9 51.0 14 29 NW OK 5.00 dust blowing 15:56 77.0 27.0 53.0 16 29 36 NNW OK 29.60 29.85 29.85 24.91 5.00 dust blowing 14:56 78.1 26.153.3 15 29 36 NNW OK 29.61 29.86 29.86 24.92 6.00 dust blowing 37 29.62 29.87 29.87 24.93 13:56 78.1 32.0 54.7 19 31 NW OK 6.00 dust blowing 29.65 29.90 29.90 24.95 12:56 78.1 35.1 55.6 21 30 38 NNW OK 6.00 dust blowing 40 29.91 24.96 12:02 75.2 35.6 54.6 24 NW OK 29.66 26 3.00 dust blowing 35.1 40 NNW 29.66 29.90 29.91 24.96 11:56 75.0 54.4 23 33 OK 2.50 dust blowing 29.90 24.95 11:38 73.4 35.6 53.9 25 33 43 NW OK 29.65 1.25 dust blowing 11:26 73.4 37.4 54.5 27 30 39 NW OK 29.65 29.90 24.95 2.00 dust blowing 10:56 39.0 39 NW 29.65 29.89 29.90 24.95 73.9 55.2 28 33 OK 3.00 dust blowing 10:31 71.6 39.2 54.4 31 28 36 NW OK 29.65 29.90 24.95 3.00 dust blowing 10:04 71.6 39.2 54.4 31 35 41 NW OK 29.65 29.90 24.95 2.50dust blowing 9:56 71.1 41.0 54.8 34 37 NNW OK 29.65 29.90 29.90 24.95 26 1.75 dust blowing 29.90 24.95 9:51 71.6 39.2 54.4 31 29 39 NNW OK 29.65 1.75 dust 17 OK 29.65 29.89 29.90 24.95 8:56 66.9 45.0 54.7 45 NW 10.00 clear 7:56 60.1 45.0 51.9 57 15 NNW OK 29.63 29.88 29.88 24.94 clear 10.00 55 6:56 57.9 NW OK 29.63 29.87 29.88 24.94 42.149.6 12 clear 10.00 5:56 57.9 39.9 48.7 51 12 NW OK 29.61 29.86 29.86 24.92 10.00 clear 29.59 29.84 29.84 24.90 4:56 55.0 36.0 45.8 48 6 WNW OK clear 10.00 3:56 55.9 37.0 46.7 49 6 WNW OK 29.58 29.83 29.83 24.89 clear 10.00 2:56 47 8 W OK 29.59 29.84 29.84 24.90 55.9 36.0 46.3 clear 10.00 29.59 29.84 29.84 24.90 1:56 57.9 36.0 47.2 44 6 W OK clear 10.00 WSW 29.60 29.84 29.85 24.91 0:56 60.1 37.9 48.9 44 6 OK clear 10.00 8 W OK 29.61 29.85 29.86 24.92 23:56 62.1 39.0 50.2 43 clear 9.00

Past Weather Conditions for KNLC

Tabular Listing: October 9, 2008 - 0:00 through October 10, 2008 - 00:00 PDT

Source: University of Utah MesoWest

Past Weather Conditions for KNLC

Tabular Listing: October 10, 2008 - 0:00 through October 11, 2008 - 00:00 PDT

Time(PDT)	Temperatur	e Dew	Wet Bulb	Relative	Wind	Wind	Wind	Quality	Pressure	Sea level	Altimeter	1500 m	Weather	Visibility
		Point 7	Femperature	e Humidity	Speed	Gust	Direction	check		pressure		Pressure	conditions	
	° F	° F	° F	%	mph	mph			in	in	in	in		miles
23:56	55.0	21.0	41.3	26	13		NW	<u>OK</u>	29.57	29.82	29.82	24.89	clear	10.00
22:56	57.0	21.9	42.6	25	22		NW	<u>OK</u>	29.56	29.81	29.81	24.88	clear	10.00
21:56	57.9	21.9	43.0	25	22		NW	<u>OK</u>	29.56	29.81	29.81	24.88	clear	10.00
20:56	57.0	21.9	42.6	25	15		WNW	<u>OK</u>	29.56	29.81	29.81	24.88	clear	10.00
19:56	57.0	21.9	42.6	25	12		WNW	<u>OK</u>	29.57	29.82	29.82	24.89	clear	10.00
18:56	57.9	21.0	42.8	24	15		NW	<u>OK</u>	29.58	29.83	29.83	24.89	clear	10.00
17:56	61.0	19.9	44.1	20	31	41	NNW	<u>OK</u>	29.57	29.82	29.82	24.89	mostly clear	10.00
16:56	63.0	18.0	44.7	17	26	36	NNW	<u>OK</u>	29.57	29.82	29.82	24.89	mostly cloudy	7.00
15:56	66.0	19.9	46.5	17	26	33	NNW	<u>OK</u>	29.58	29.82	29.83	24.89	partly cloudy	8.00
14:56	68.0	19.0	47.3	15	25	31	NNW	<u>OK</u>	29.59	29.83	29.84	24.90	mostly clear	10.00
13:56	66.9	17.1	46.4	15	24	35	NNW	<u>OK</u>	29.61	29.86	29.86	24.92	clear	9.00
12:56	66.0	23.0	47.2	19	23	33	NNW	<u>OK</u>	29.65	29.90	29.90	24.95	clear	10.00
11:56	64.0	23.0	46.3	21	29	37	NW	<u>OK</u>	29.68	29.93	29.93	24.98	clear	10.00
10:56	63.0	24.1	46.0	23	26	36	NNW	<u>OK</u>	29.69	29.94	29.94	24.99	clear	10.00
9:56	61.0	26.1	45.6	26	29	36	NW	<u>OK</u>	29.69	29.94	29.94	24.99	clear	10.00
8:56	57.9	27.0	44.3	30	33	39	NW	<u>OK</u>	29.69	29.93	29.94	24.99	mostly clear	10.00
7:56	55.0	27.0	42.9	34	24	31	NW	<u>OK</u>	29.68	29.92	29.93	24.98	mostly clear	10.00
6:56	53.1	28.0	42.2	38	16		NW	<u>OK</u>	29.67	29.92	29.92	24.97	clear	10.00
5:56	53.1	27.0	41.9	36	16		NNW	<u>OK</u>	29.66	29.91	29.91	24.96	blowing dust	10.00
4:56	54.0	25.0	41.8	32	15		NNW	<u>OK</u>	29.66	29.90	29.91	24.96	blowing dust	10.00
3:56	55.0	24.1	42.1	30	15		NW	<u>OK</u>	29.65	29.89	29.90	24.95	blowing dust	10.00
2:56	57.0	23.0	42.8	27	18		NW	<u>OK</u>	29.66	29.91	29.91	24.96	blowing dust	10.00
1:56	59.0	19.9	43.1	22	20		NW	Caution	29.65	29.90	29.90	24.95	blowing dust	10.00
0:56	61.0	18.0	43.7	19	18		NW	Caution	29.64	29.88	29.89	24.94	blowing dust	6.00
23:56	62.1	18.0	44.2	18	21		NW	<u>Caution</u>	29.64	29.89	29.89	24.94	blowing dust	6.00

Source: University of Utah MesoWest

Alpaugh -	San Joaquin	Valley -	Station 203
-----------	-------------	----------	-------------

Date	Hour	ETo (in)	Precip (in)	Sol Rad (Ly/day)	Vapor Pressure (mBars)	Air Temp (°F)	Rel Hum (%)	Dew Point (°F)	Wind Speed (MPH)	Wind Dir (0- 360)	Soil Temp (°F)
10/08/2008	0100	0.00	0.00	0	12.1	55.3	81	49.7	1.4	139.4	69.2
	0200	0.00 R	0.00	0	11.5	54.0	81	48.2	1.0 I	96.5	68.9
	0300	0.00	0.00	0	11.4	53.3	82	47.9	1.7	168.0	68.6
	0400	0.00	0.00	0	11.0	52.1	83	47.1	1.6	185.2	68.4
	0500	0.00	0.00	0	10.9	50.0	89	46.8	1.9	104.1	68.1
	0600	0.00	0.00	2	10.5	49.6	86	45.7	2.4	149.6	67.9
	0700	0.00	0.00	137	10.3	52.3	77	45.4	2.2	174.4	67.6
	0800	0.00	0.00	485	12.0	62.3	62	49.3	1.3	134.6	67.4
	0900	0.01	0.00	833	13.3	72.3	49	52.1	1.3	55.7	67.2
	1000	0.02	0.00	1136	12.8	77.9	39	51.0	2.9	314.5	67.2
	1100	0.02	0.00	1347	12.2	80.7	34	49.9	4.0	300.8	67.3
	1200	0.02	0.00	1443	12.3	83.9	31	50.1	5.3	327.9	67.6
	1300	0.02	0.00	1400	12.5	85.9	30	50.5	7.3	337.9	68.0
	1400	0.02	0.00	1244	12.5	87.1	29	50.5	6.6	344.3	68.4
	1500	0.02	0.00	993	11.5	87.5	26	48.2	6.4	316.6	69.0
	1600	0.01	0.00	663	10.7	86.8	25	46.2	6.5	296.0	69.5
	1700	0.01	0.00	296	11.0	84.4	27	47.1	6.3	304.7	69.9
	1800	0.00	0.00	20	11.9	77.7	37	49.1	3.2	303.9	70.1
	1900	0.00	0.00	0	11.9	71.6	45	49.1	1.2	328.4	70.2
	2000	0.00	0.00	0	12.8	65.5	60	51.0	1.2	41.0	70.1
	2100	0.00	0.00	0	12.8	63.6	64	51.0	1.1	6.4	69.9
	2200	0.00	0.00	0	12.4	62.6	64	50.2	3.0	236.2	69.7
	2300	0.00	0.00	0	11.0	61.4	59	47.0	1.5	231.6	69.5
	2400	0.00 R	0.00	0	10.3	58.5	62	45.4	1.0 I	252.5	69.2
Tots/Avgs		0.15	0.00	417	11.7	68.2	55	48.7	3.0	214.6	68.7

Source: The California Irrigation Management Information System (CIMIS)

Alpaugh - San Joaquin Valley - Station 203

Date	Hour	ETo (in)	Precip (in)	Sol Rad (Ly/day)	Vapor Pressure (mBars)	Air Temp (°F)	Rel Hum (%)	Dew Point (°F)	Wind Speed (MPH)	Wind Dir (0- 360)	Soil Temp (°F)
10/09/2008	0100	0.00	0.00	0	10.0	56.9	63	44.4	2.3	255.6	69.0
	0200	0.00	0.00	0	9.4	56.1	61	42.9	2.8	260.8	68.7
	0300	0.00	0.00	0	9.7	51.4	75	43.7	1.4	98.3	68.5
	0400	0.00	0.00	0	9.0	50.2	73	41.7	1.9	158.8	68.2
	0500	0.00	0.00	0	8.8	52.3	66	41.1	2.6	217.3	67.9
	0600	0.00	0.00	2	8.6	50.6	69	40.7	3.4	262.7	67.6
	0700	0.00	0.00	142	9.2	52.3	69	42.3	5.4	298.4	67.4
	0800	0.01	0.00	508	10.1	60.1	57	44.8	9.6	321.6	67.1
	0900	0.01	0.00	832	9.7	67.3	43	43.8	14.5	329.4	67.0
	1000	0.02	0.00	1023	8.9	71.1	34	41.4	16.1	323.4	66.9
	1100	0.02	0.00	1206	8.6	73.8	30	40.8	16.2	324.0	67.0
	1200	0.03	0.00	1315	8.7	76.8	28	40.9	15.9	327.3	67.2
	1300	0.03	0.00	1220	7.9	78.1	24	38.4	16.3	330.3	67.5
	1400	0.02	0.00	1089	7.4	78.9	22	36.8	15.7	331.1	67.8
	1500	0.02	0.00	896	6.1	78.7	18	32.1	16.5	329.8	68.2
	1600	0.02	0.00	554	5.0	76.9	16	27.1	15.6	321.7	68.5
	1700	0.01	0.00	231	4.9	73.1	18	26.8	16.6	315.7	68.8
	1800	0.01	0.00	18	4.4	67.0	20	24.1	10.1	324.3	68.8
	1900	0.01	0.00	0	3.5	62.8	18	18.5	11.0	320.7	68.7
	2000	0.00	0.00	0	3.4	58.1	21	18.1	8.8	309.1	68.6
	2100	0.00	0.00	0	4.1	52.1	31	22.1	3.3	307.9	68.3
	2200	0.00	0.00	0	3.5	54.6	24	18.9	4.5	291.0	68.0
	2300	0.00	0.00	0	3.8	51.6	29	20.4	3.1	291.7	67.7
	2400	0.00	0.00	0	4.0	48.8	34	21.5	2.2	184.8	67.3
Tots/Avgs		0.21	0.00	377	7.0	62.5	39	33.9	9.0	284.8	67.9

Source: The California Irrigation Management Information System (CIMIS)

APPENDIX F: Climatology

F1. Climate Summaries

FRESNO WSO AP, CALIFORNIA (043257)

Period of Record Monthly Climate Summary

Period of Record : 7/ 1/1948 to 8/31/2009

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual	
Average Max. Temperature (F)	54.5	61.5	67.0	74.5	83.6	91.7	98.3	96.3	90.5	79.7	65.3	54.6	76.5	
Average Min. Temperature (F)	37.5	40.6	43.8	47.9	54.4	60.4	65.7	63.9	59.4	51.0	42.4	37.2	50.3	
Average Total Precipitation (in.)	2.11	1.90	1.87	1.01	0.37	0.14	0.01	0.01	0.16	0.51	1.14	1.58	10.80	
Average Total 0.0 <														
Average Snow 0 <t< td=""></t<>														
Percent of possible of	Percent of possible observations for period of record.													
Max. Temp.: 100% N	<u>/in. T</u>	emp.:	100%	Prec	ipitatio	on: 10	<u>0% S</u>	nowfa	all: 91.	<u>2% S</u>	now D	Depth:	91.3%	
Source: Western Region	al Clim	ate Ce	nter											

HANFORD 1 S, CALIFORNIA (043747)

Period of Record Monthly Climate Summary

Period of Record : 7/ 1/1899 to 8/31/2009

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
Average Max. Temperature (F)	54.7	61.9	67.6	75.0	83.7	91.4	97.9	96.1	90.4	80.0	66.3	55.4	76.7
Average Min. Temperature (F)	35.2	38.6	42.1	46.4	52.5	58.3	62.4	60.4	55.3	47.2	38.7	34.6	47.6
Average Total Precipitation (in.)	1.59	1.53	1.48	0.75	0.26	0.08	0.01	0.01	0.16	0.38	0.84	1.20	8.29
Average Total SnowFall (in.)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Average Snow Depth (in.)	0	0	0	0	0	0	0	0	0	0	0	0	0
Percent of possible of	observ	ation	s for p	eriod	of rec	ord.							
Max. Temp.: 98.4%	Min. T	emp.:	98.19	% Pre	cipitat	tion: 9	8.8%	Snow	/fall: 9	8.2%	Snow	Dept	h:
98.2%													

Source: Western Regional Climate Center

CORCORAN IRRIG DIST, CALIFORNIA (042012)

Period of Record Monthly Climate Summary

Period of Record : 7/ 1/1948 to 8/31/2009

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
Average Max. Temperature (F)	54.6	61.9	68.2	76.1	85.5	93.1	99.0	97.0	91.3	81.0	66.1	54.9	77.4
Average Min. Temperature (F)	36.5	39.7	42.7	46.5	52.9	58.7	63.4	61.9	57.4	49.2	40.6	35.8	48.8
Average Total Precipitation (in.)	1.48	1.34	1.13	0.66	0.23	0.05	0.01	0.01	0.16	0.32	0.73	0.98	7.09
Average Total SnowFall (in.)	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
Average Snow Depth (in.)	0	0	0	0	0	0	0	0	0	0	0	0	0
Percent of possible of	bserv	ation	s for p	eriod	of rec	ord.							
Max. Temp.: 99.5%	Min. T	emp.:	99.59	% Pre	cipitat	tion: 9	8.9%	Snow	/fall: 9	9.5%	Snow	Dept	h:
99.5%													

Source: Western Regional Climate Center

BAKERSFIELD WSO ARPT, CALIFORNIA (040442)

Period of Record Monthly Climate Summary

Period of Record : 10/1/1937 to 8/31/2009

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
Average Max. Temperature (F)	57.4	63.6	69.0	75.8	84.3	92.1	98.7	96.6	90.9	80.6	67.3	57.8	77.8
Average Min. Temperature (F)	38.5	42.1	45.5	49.8	56.7	63.3	69.2	67.6	62.9	53.9	44.2	38.5	52.7
Average Total Precipitation (in.)	1.05	1.17	1.12	0.66	0.21	0.07	0.01	0.04	0.11	0.30	0.60	0.78	6.12
Average Total SnowFall (in.)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
Average Snow Depth (in.)	0	0	0	0	0	0	0	0	0	0	0	0	0
Percent of possible of	observ	ation	s for p	eriod	of rec	ord.							
Max. Temp.: 99.6%	Min. T	emp.	99.69	% Pre	cipitat	tion: 9	9.7%	Snow	/fall: 9	2.4%	Snow	Dept	h:
92.2%													

Source: Western Regional Climate Center

F2. Preliminary Climatological Data for October 2008

Fresno, CA - October 2008

CXUS56 KHNX 011246 CF6FAT PRELIMINARY LOCAL CLIMATOLOGICAL DATA (WS FORM: F-6)

										STAT MONT YEAF LATI LONC	TION TH: R: LTUD GITU	: DE:	FRESI OCTOF 2008 36 119	NO CA BER 46 N 43 W				
	TEMPE	RATU	JRE I	IN F	:	:	PCPN:	2	SNOW:	WIN	1D		SUNS	SHINE	: SK	Y	: PK	WND
1	2	3	4	5	6A	6B		8	===== 9 127	10 AVG	==== 11 MX	==== 12 2мты	13	14	15	10	5 17	==== 18
DY ==:	MAX =====	MIN	AVG	DEP	HDD	CDD	WTR	SNW	DPTH	SPD	SPD	DIR	MIN	PSBL	S-S	WX	SPD	DR ====
1	96	65	81	11	0	16	0 00	0 0	0	3 (9 14	310	М	м	3	8	17	310
2	88	68	78		0	13	0.00	0.0	0	9.1	17	310	M	M	6	0	23	300
3	78	62	70	0	0	5	Т	0.0	0	4.1	L 18	310	М	М	7		22	310
4	74	59	67	-3	0	2	0.08	0.0	0	8.1	L 17	300	М	М	б	1	22	310
5	76	53	65	-4	0	0	0.00	0.0	0	5.6	5 13	310	М	М	1		20	290
б	82	54	68	-1	0	3	0.00	0.0	0	2.4	19	290	М	М	0		13	270
7	86	56	71	3	0	6	0.00	0.0	0	2.5	5 12	300	М	М	0	8	15	290
8	87	59	73	5	0	8	0.00	0.0	0	3.2	2 10	280	М	М	0	8	18	280
9	80	54	67	-1	0	2	0.00	0.0	0	12.3	3 25	320	М	М	0		33	320
10	66	47	57	-10	8	0	0.00	0.0	0	11.6	5 24	310	М	М	2		32	290
11	66	41	54	-13	11	0	0.00	0.0	0	5.5	5 17	300	М	М	2		24	330
12	67	40	54	-13	11	0	0.00	0.0	0	3.0) 10	170	М	М	0	_	14	170
13	73	44	59	-7	6	0	0.00	0.0	0	2.3	3 10	230	М	М	0	8	13	230
14	79	46	63	-3	2	0	0.00	0.0	0	1.8	37	320	М	М	0		13	220
15	84	49	67	1	0	2	0.00	0.0	0	1.1	/ 9	300	М	M	1	0	20	210
16	85	50	68	3	0	3	0.00	0.0	0	2.1	L 7	250	M	M	0	8	8	320
1 /	90	53	72	/	0	/	0.00	0.0	0	1.3	5 / 5 1 0	140 270	M	M	3 5	8	∠⊥ 1 ⊏	300
10	0/	20	13	9	0	0 0	0.00	0.0	0	5.0	0 I 4	210	Ivi N	Ivi Ivi	C A	0	14	220
20	80	55	66	2 2	0	2 1	0.00	0.0	0	3.0	ער ג 11	210	M	IM M	1	o Q	17	200
20	78	19 19	64	2 1	1		0.00	0.0	0	1 1	5 2 5 2	170	M	M	3	0 8	1 / 2 3	150
22	83	52	68	5	0	3	0.00	0.0	0	0 0	3 5	290	M	M	0	8	10	190
23	86	51	69	7	0	4	0 00	0 0	0	2 1	, J I 7	300	M	M	0	8	14	210
2.4	85	52	69	, 7	0	4	0.00	0.0	0	2.3	3 8	310	M	M	1	8	2.4	150
25	86	53	70	8	0	5	0.00	0.0	0	1.1	L 7	140	М	М	1	8	12	280
26	86	52	69	8	0	4	0.00	0.0	0	1.4	1 7	290	М	М	0	8	16	280
27	84	52	68	7	0	3	0.00	0.0	0	2.2	29	300	М	М	5	8	13	280
28	83	55	69	9	0	4	0.00	0.0	0	1.8	3 8	70	М	М	3	8	21	230
29	82	52	67	7	0	2	0.00	0.0	0	1.3	37	60	М	М	5	8	9	70
30	81	56	69	10	0	4	0.03	0.0	0	6.0) 18	220	М	М	8	8	24	220
31	75	61	68	9	0	3	0.12	0.0	0	4.6	5 20	70	M	M	8		23	60
SM	2514	164	47 1		39	114	0.23		0.0	118.5	5		M		75			
AV	81.1	53	.1							3.8	= 3 FA	STST	 M	 М	2		MAX(MP	 H)

MISC ----> # 25 320 # 33 320 NOTES: # LAST OF SEVERAL OCCURRENCES COLUMN 17 PEAK WIND IN M.P.H. PRELIMINARY LOCAL CLIMATOLOGICAL DATA (WS FORM: F-6) , PAGE 2 STATION: FRESNO CA MONTH: OCTOBER 2008 YEAR: LATITUDE: 36 46 N LONGITUDE: 119 43 W [TEMPERATURE DATA] [PRECIPITATION DATA] SYMBOLS USED IN COLUMN 16 TOTAL FOR MONTH: 0.23 1 = FOG OR MIST DPTR FM NORMAL: -0.42 2 = FOG REDUCING VISIBILITY AVERAGE MONTHLY: 67.1 DPTR FM NORMAL: 2.1 96 ON 1 GRTST 24HR 0.15 ON 30-31 TO 1/4 MILE OR LESS HIGHEST: 40 ON 12 LOWEST: 3 = THUNDERSNOW, ICE PELLETS, HAIL 4 = ICE PELLETSTOTAL MONTH: 0.0 INCH 5 = HAILGRTST 24HR 0.0 6 = FREEZING RAIN OR DRIZZLEGRTST DEPTH: 7 = DUSTSTORM OR SANDSTORM: 0 VSBY 1/2 MILE OR LESS 8 =SMOKE OR HAZE [NO. OF DAYS WITH] [WEATHER - DAYS WITH] 9 = BLOWING SNOW X = TORNADO MAX 32 OR BELOW: 0 0.01 INCH OR MORE: 3 2 MAX 90 OR ABOVE: 0.10 INCH OR MORE: 1 0 0.50 INCH OR MORE: MIN 32 OR BELOW: 0 0 1.00 INCH OR MORE: MIN 0 OR BELOW: 0 [HDD (BASE 65)] CLEAR (SCALE 0-3) 20 TOTAL THIS MO. 39 DPTR FM NORMAL PTCLDY (SCALE 4-7) 11 -34 TOTAL FM JUL 1 39 CLOUDY (SCALE 8-10) 0 DPTR FM NORMAL -37 [CDD (BASE 65)] TOTAL THIS MO. 114 25 DPTR FM NORMAL [PRESSURE DATA] TOTAL FM JAN 1 2376 HIGHEST SLP 30.33 ON 13 DPTR FM NORMAL 414 LOWEST SLP 29.75 ON 4 [REMARKS] #FINAL-10-08#

Hanford, CA - October 2008

CXUS56 KHNX 011246 CF6HJO PRELIMINARY LOCAL CLIMATOLOGICAL DATA (WS FORM: F-6)

STATION:	HANE	FORI	D	CA
MONTH:	OCT	DBEI	R	
YEAR:	2008	3		
LATITUDE:	36	19	Ν	
LONGITUDE:	119	38	W	

r	FEMPE	RATU	JRE I	IN F	:	:	PCPN:	2	SNOW:	WIN	ID		SUNS	SHINE	SK	Y	: PK	WND
==: 1	2	3	4	5	===== 6A	===== 6B		8	9	10	11	12	13	14	15	10	======= 5 17	==== 18
DY	MAX	MIN	AVG	DEP	HDD	CDD	WTR	SNW	122 DPTH	AVG SPD	MX SPD	2MIN DIR	MIN	PSBL	S-S	WX	SPD	DR
==:	=====	:===:		====:	=====	=====	======	====:	=====	=====	===	====	=====			===:	=======	====
1	95	63	79	9	0	14	0.00	0.0	0	3.2	2 10	320	М	М	0	8	14	320
2	89	67	78	8	0	13	0.00	0.0	0	9.1	. 17	310	М	М	0	-	28	360
3	79	57	68	-2	0	3	0.00	0.0	0	4.0	17	310	М	М	0	8	21	310
4	75	60	68	-1	0	3	0.04	0.0	0	7.7	17	320	М	М	5	1	20	330
5	77	53	65	-4	0	0	0.00	0.0	0	5.2	14	320	М	М	0		17	320
б	82	51	67	-2	0	2	0.00	0.0	0	3.4	. 9	340	М	М	0		12	320
7	86	51	69	1	0	4	0.00	0.0	0	3.4	12	320	М	М	0		14	330
8	87	52	70	2	0	5	0.00	0.0	0	3.1	. 13	310	М	М	0	18	16	300
9	79	52	66	-2	0	1	0.00	0.0	0	12.0	24	310	М	М	0	8	30	320
10	67	44	56	-12	9	0	0.00	0.0	0	12.7	23	330	М	М	1	8	32	340
11	67	37	52	-15	13	0	0.00	0.0	0	8.9	22	310	М	М	0		26	310
12	69	34	52	-15	13	0	0.00	0.0	0	3.5	12	330	М	М	0		16	320
13	74	33	54	-13	11	0	0.00	0.0	0	2.5	10	330	М	М	0	8	14	330
14	81	36	59	-7	б	0	0.00	0.0	0	1.7	7	320	М	М	0	8	12	280
15	84	39	62	-4	3	0	0.00	0.0	0	2.1	. 8	340	М	М	0	18	12	340
16	86	40	63	-2	2	0	0.00	0.0	0	1.7	8	320	М	М	0	18	12	20
17	92	44	68	3	0	3	0.00	0.0	0	1.1	. 7	60	М	М	0	18	8	20
18	87	53	70	5	0	5	0.00	0.0	0	5.2	14	310	М	М	0	8	18	290
19	82	46	64	0	1	0	0.00	0.0	0	3.4	: 12	320	М	М	0		15	310
20	80	48	64	0	1	0	0.00	0.0	0	5.4	: 12	330	М	М	0	18	16	330
21	77	42	60	-4	5	0	0.00	0.0	0	1.6	57	40	М	М	0	18	10	50
22	83	43	63	0	2	0	0.00	0.0	0	0.6	5	310	М	М	0	18	7	350
23	87	43	65	2	0	0	0.00	0.0	0	0.9	6	190	М	М	0	18	8	340
24	86	44	65	3	0	0	0.00	0.0	0	0.9	0 7	80	М	M	0	18	9	70
25	86	44	65	3	0	0	0.00	0.0	0	0.8	8	340	M	M	0	18	10	330
26	87	43	65	3	0	0	0.00	0.0	0	0.8	6	340	M	M	0	18	10	240
27	83	42	63	2	2	0	0.00	0.0	0	1.9	8	310	M	M	0	18	12	320
28	83	45	64	3	Ţ	0	0.00	0.0	0	1.2	6	110	M	M	0	18	8	170
29	84	45	65	5	0	0	0.00	0.0	0	1.3	8	100	M	M	1	18	8	200
30	88	49	69	9 7	0	4	0.04	0.0	0	5.5) ZU	180	M	IVI N	1	10	28	1/U
31	/4	5/	00	/	0	⊥ 	0.06	0.0	0	2.5	15	200	IVI	Iv1	4	18	20	80
SM	2536	5 145	 57		 69	 58	0.14		0.0	===== 117.7	,		 M		11			
==:	=====	====		====:	=====			====:	=====		===	====	=====			===:		====
AV	81.8	8 47	. 0							3.8	5 FA	STST	М	М	0		MAX(MP	H)
								MISC	2	-> ‡	24	310				#	32 34	0
==:	=====	====		====:	=====	=====		====:	=====	=====	===	====	=====			===:		====

# LAST OF SEVERAL OCCUP	RENCES	
COLUMN 17 PEAK WIND IN	M.P.H.	
PRELIMINARY LOCAL CLIMA	ATOLOGICAL DATA (WS FORM: F	-6) , PAGE 2
	STATION MONTH: YEAR: LATITUDI LONGITUI	: HANFORD CA OCTOBER 2008 E: 36 19 N DE: 119 38 W
[TEMPERATURE DATA]	[PRECIPITATION DATA]	SYMBOLS USED IN COLUMN 16
AVERAGE MONTHLY: 64.4 DPTR FM NORMAL: -0.8 HIGHEST: 95 ON 1 LOWEST: 33 ON 13	TOTAL FOR MONTH: 0.14 DPTR FM NORMAL: -0.28 GRTST 24HR 0.16 ON 13-14 SNOW, ICE PELLETS, HAIL TOTAL MONTH: 0.0 INCH GRTST 24HR 0.0 GRTST DEPTH: 0	<pre>1 = FOG OR MIST 2 = FOG REDUCING VISIBILITY TO 1/4 MILE OR LESS 3 = THUNDER 4 = ICE PELLETS 5 = HAIL 6 = FREEZING RAIN OR DRIZZLE 7 = DUSTSTORM OR SANDSTORM: VSBY 1/2 MILE OR LESS</pre>
[NO. OF DAYS WITH]	[WEATHER - DAYS WITH]	8 = SMOKE OR HAZE 9 = BLOWING SNOW X = TORNADO
MAX 32 OR BELOW: 0 MAX 90 OR ABOVE: 2 MIN 32 OR BELOW: 0 MIN 0 OR BELOW: 0	0.01 INCH OR MORE: 3 0.10 INCH OR MORE: 0 0.50 INCH OR MORE: 0 1.00 INCH OR MORE: 0	
TOTAL THIS MO. 69 DPTR FM NORMAL -9 TOTAL FM JUL 1 69 DPTR FM NORMAL -14	CLEAR (SCALE 0-3) 29 PTCLDY (SCALE 4-7) 2 CLOUDY (SCALE 8-10) 0	
[CDD (BASE 65)] TOTAL THIS MO. 58 DPTR FM NORMAL -16 TOTAL FM JAN 1 1913 DPTR FM NORMAL-39745	[PRESSURE DATA] HIGHEST SLP 30.34 ON 13 LOWEST SLP 29.77 ON 4	
[REMARKS] #FINAL-10-08#		

Bakersfield, CA - October 2008

STATION:

MONTH:

BAKERSFIELD CA

OCTOBER

CXUS56 KHNX 011246 CF6BFL PRELIMINARY LOCAL CLIMATOLOGICAL DATA (WS FORM: F-6)

		YEAR:					2008											
							LA.L.	L'I'UD JITU	E: DE:	35 2 119	25 N 3 W							
ן 	ГЕМРЕ 	ERATU	JRE :	IN F	: 	:	:PCPN:		SNOW:	1IW 	JD 		SUNS	SHINE	: SK:	Y 	:PK 	WND
1	2	3	4	5	6A	6B	7	8	9 12Z	10 AVG	11 MX	12 2MIN	13	14	15	10	5 17	18
DY	MAX	MIN	AVG	DEP	HDD	CDD	WTR	SNW	DPTH	SPD	SPD	DIR	MIN	PSBL	S-S	WX	SPI	DR
===	=====		====:	====	====:	=====	=====	====:	=====	=====		====	====:	=====	====:	====		====
1	93	69	81	8	0	16	0.00	0.0	0	5.3	3 14	300	М	М	0		16	300
2	89	65	77	5	0	12	0.00	0.0	0	6.6	5 14	310	М	М	0		17	320
3	80	63	72	0	0	7	Т	0.0	0	4.0) 15	310	M	M	1		18	320
4	74	60 F 2	67	-5	1	2	.T.	0.0	0	8.2	5 18 5 13	330	M	M	5		<u>کک</u> ۱ ۲	330
5	74 70	55	68	- 7	1	3	0.00	0.0	0	4.3	5 I 3 1 1 0	320 310	™ M	I™I M	∠ ∩		16	1 3 1 0
7	84	58	71	0	0	6	0.00	0.0	0	3.4	1 10 1 10	320	M	M	0		14	300
8	86	59	73	3	0	8	0.00	0.0	0	3.5	7 14	300	M	M	0	8	18	310
9	79	52	66	-4	0	1	0.00	0.0	0	7.7	7 16	330	М	М	0	8	21	. 330
10	66	46	56	-14	9	0	0.00	0.0	0	6.0	21	340	М	М	1		25	320
11	65	44	55	-14	10	0	0.00	0.0	0	5.3	3 18	340	М	М	0		23	320
12	67	43	55	-14	10	0	0.00	0.0	0	5.3	3 13	310	М	М	0		18	320
13	74	45	60	-9	5	0	0.00	0.0	0	6.6	5 20	350	М	М	0	-	26	350
14	82	48	65	-3	0	0	0.00	0.0	0	4.6	5 13	310	M	M	0	8	14	: 310
15 16	83	52 52	68	0	0	3	0.00	0.0	0	4.0	J ⊥3 1 1 ⁄1	320	M	M	0	8	15	0 310
17	00 00	52 54	29 73	2	0	4 8	0.00	0.0	0	4.4	± 14 1 15	320	™ M	I™I M	0	o g	/ ⊥ 1 ۹	300
18	88	60	74	7	0	9	0.00	0.0	0	5 5	14 13	340	M	M	0	8	16	330
19	81	55	68	2	0	3	0.00	0.0	0	3.9	9 13	310	M	M	0	U	16	310
20	78	55	67	1	0	2	0.00	0.0	0	3.() 10	300	М	М	0	8	15	280
21	75	53	64	-1	1	0	0.00	0.0	0	2.8	38	330	М	М	0		14	270
22	88	52	70	5	0	5	0.00	0.0	0	3.2	2 14	30	М	М	0	8	18	30
23	86	50	68	3	0	3	0.00	0.0	0	3.1	L 10	350	М	М	0	8	14	320
24	86	53	70	6	0	5	0.00	0.0	0	3.1	L 10	50	М	М	0	~	14	310
25	85	55	70	6	0	5	0.00	0.0	0	3.4	1 12	300	M	M	0	8	15	310
26 27	8/ 02	55	/ L	8	0	6	0.00	0.0	0	4.2	2 14 0 10	300	M M	M	0	0	1/	200
28	80	53	67	5	0	- 2	0.00	0.0	0	2.2	3 Q	270	M	M	0	8	10	200
29	83	54	69	7	0	4	0.00	0.0	0	2.2	29	120	M	M	0	8	14	120
30	86	58	72	11	0	- 7	T	0.0	0	12.6	5 32	150	M	M	1	78	40	150
31	80	65	73	12	0	8	Т	0.0	0	5.8	3 16	120	М	М	5	7	20	130
===	=====	=====	====:	====	=====	=====	======	====	=====	=====	====	====	=====	=====	====:	====		====
SM ===	25⊥8 =====	3 165 ====	9⊥ ====:	====	36 ====	⊥33 =====	T ======	====:	U.U =====	⊥45.8 =====	3 ====	====	M =====		15 ====			====
AV	81.2	2 54	. 5							4.7	7 FA	STST	M	M	0		MAX (ME	 РН)
								MISC	<u> </u>	-> ‡	ŧ 32	150				#	40 15	0
===			====:	====	=====			=====		=====		====	====		====:	====	======	====

NOTES:

# LAST OF SEVERAL OCCUP	RENCES		
COLUMN 17 PEAK WIND IN	M.P.H.		
PRELIMINARY LOCAL CLIMA	TOLOGICAL DATA (WS	FORM: F-	6) , PAGE 2
		STATION: MONTH: YEAR: LATITUDE LONGITUD	BAKERSFIELD CA OCTOBER 2008 : 35 25 N E: 119 3 W
[TEMPERATURE DATA]	[PRECIPITATION DAT	'A]	SYMBOLS USED IN COLUMN 16
AVERAGE MONTHLY: 67.9 DPTR FM NORMAL: 0.7 HIGHEST: 93 ON 1 LOWEST: 43 ON 12	TOTAL FOR MONTH: DPTR FM NORMAL: GRTST 24HR T C SNOW, ICE PELLETS, TOTAL MONTH: 0.0 GRTST 24HR 0.0 GRTST DEPTH: 0	T -0.30 N 31-31 HAIL INCH	<pre>1 = FOG OR MIST 2 = FOG REDUCING VISIBILITY TO 1/4 MILE OR LESS 3 = THUNDER 4 = ICE PELLETS 5 = HAIL 6 = FREEZING RAIN OR DRIZZLE 7 = DUSTSTORM OR SANDSTORM: VSBY 1/2 MILE OR LESS</pre>
[NO. OF DAYS WITH]	[WEATHER - DAYS WI	TH]	8 = SMOKE OR HAZE 9 = BLOWING SNOW X = TORNADO
MAX 32 OR BELOW: 0 MAX 90 OR ABOVE: 2 MIN 32 OR BELOW: 0 MIN 0 OR BELOW: 0 [HDD (BASE 65)]	0.01 INCH OR MORE: 0.10 INCH OR MORE: 0.50 INCH OR MORE: 1.00 INCH OR MORE:	0 0 0 0	
TOTAL THIS MO.36DPTR FM NORMAL-19TOTAL FM JUL 136DPTR FM NORMAL-21	CLEAR (SCALE 0-3) PTCLDY (SCALE 4-7) CLOUDY (SCALE 8-10	29 2) 0	
[CDD (BASE 65)] TOTAL THIS MO. 133 DPTR FM NORMAL -5 TOTAL FM JAN 1 2524 DPTR FM NORMAL 240	[PRESSURE DATA] HIGHEST SLP 30.33 LOWEST SLP 29.75	ON 13 ON 4	
[REMARKS] #FINAL-10-08#			

APPENDIX G: AQS Printout

UNITES STATES ENVIRONMENTAL PROTECTION AGENCY

User ID: FUW

RAW DATA REPORT

Report Re	quest I	D: 7	20607				Report (Code:	AMP35	0					Feb. 18, 2010
									GEOGR	APHIC SE	ELECTIONS				
Tribal	State	County	Site	Parameter	POC	City	AQCR	UAR	CBSA	CSA	EPA Region	Method	Duration	Begin Date	End Date
	06	019													
	06	031													
	06	107													
	06	029													
Dara	PROTOCOL SELECTIONS														
Classif	ication	Par	ameter	Method	Durati	on									
			81102												
		SELEC	CTED OP1	TIONS								SORT	ORDER		
C	ption 1	уре				Opt	ion Value				Order	C	olumn		
II	INCLUDE NULLS					YES				1	STA	re_code			
DAI	DAILY STATISTICS					MEAN				2	COUN	ITY_CODE			
RAI	RAW DATA EVENTS INC				INCLU	JDE EVENTS	5			3	SI	TE_ID			
MEI	MERGE PDF FILES				YES Fandard				4	PARAM	ETER_CODE				
	UNITS					5.	1111011110				5		POC		

GLOBAL DATE	S
Start Date B	End Date
2008 10 01 200	08 10 31

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY AIR QUALITY SYSTEM

							RAW DAT	A REPORT					Feb. 18, 2010
(SITE I COUNTY CITY: SITE A SITE C MONITO	81102) PM10 T D: 06-019-000 : (019) Fresh 27000) Fresh DDRESS: 4706 OMMENTS: ARB R COMMENTS: G	otal 0-10um ST 7 POC:1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	P ., FRESNO 00244 NEW SI AMPLER W/ SIE	TE 07/84. RRR ANDERSON 1:	200 SSI INLET		STATE AQCR: URBAN LAND LOCAT	: (06) Califor (031) SAN JC IZED AREA: (284C USE: COMMERCIA ION SETTING:		CAS NUMBER: LATITUDE: LONGITUDE: UTM ZONE: UTM NORTHING: UTM EASTING: ELEVATION-MSL: PROBE HEIGHT:	36.705556 -119.741389 11 4065510 255112 89 5		
SUPPOR MONITO COLLEC PQAO: (I AGENCY: (09 R TYPE: SLAMS TION AND ANAL 0145) Califor	45) San Joaqui YSIS METHOD: (nia Air Resour	n Valley Unif 063) HI-VOL S ces Board	ied Air Polluti SA/GMW-1200 GRA	ion Control Dis VIMETRIC	strict	REPC	DRT FOR: 2008	1		DURATION UNITS: N MIN DETE	N: 24 HOURS Micrograms/cubic mete CCTABLE: 2	er (25 C)
Day	MONTH JANUARY	FEBRUARY	MARCH	APRIL	MAY	JUNE	JULY	AUGUST	SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER	
1 2 3 4 5										AG			
6 7 8										48			
9 10 11 12										99 13			
13 14 15 16 17										68			
18 19 20 21										55			
22 23 24 25 26													
27 28 29 30										88			
31													

NO.:	0	0	0	0	0	0	0	0	0	5	0	0
MAX:										99.		
MEAN:										71.6		
ANNUAL OBSERVA	TIONS: 5	5	ANNUAL MEAN:	71.6	ANNUAL MAX:	99.						

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY AIR QUALITY SYSTEM

RAW DATA REPORT	

							RAW DAT	A REPORT					Feb. 18, 2010
(8	31102) PM10 To	otal 0-10um ST	ГР									CAS NUMBER:	
												LATITUDE:	36.781389
SITE II	06-019-0008	POC:	L				STATE	(06) Califor	rnia			LONGITUDE:	-119.772222
COUNTY	: (U19) Freshc						AQCR:	(031) SAN JO	DAQUIN VALLEY			UTM ZONE:	11
CITY: (27000) Fresho						URBAN	IZED AREA: (2840)) FRESNO, CA			UTM NORTHING:	4074004
SITE A	JDRESS: 3425 I	N FIRST SI, FI	2/2 MT NEW C	E EDECNO OL LUE	AUDAUD OTTO A	DD GITE NAME (#	LAND	JSE: RESIDENTI	AL			UTM EASTING:	252601
MONITO	COMMENTS: RELOU	AIED ABOUL I-	-2/3 MI. NNW C	DF FRESNO-OLIVE	AVENUE SIIE. A	RB SIIE NAME (# IPT	F) IS FF LOCAT	ION SETTING:	SUBURBAN			ELEVATION-MSL:	96
MONITO	COMMENTS: GI	W HI-VOLOME .	SAMPLER W/SIE	KRA ANDERSON MOI	JEL 1200 331 IN	LE1.						PROBE HEIGHT:	13
SUPPOR	r AGENCY: (014	5) California	a Air Resource	es Board									
MONITOR	R TYPE: SLAMS						REPO	RT FOR: 2008			DURATION	1: 24 HOURS	
COLLECT	TION AND ANALY	SIS METHOD:	(063) HI-VOL :	SA/GMW-1200 GRAV	VIMETRIC						UNITS: N	Aicrograms/cubic met	er (25 C)
PQAO: (0145) Californ	nia Air Resou	rces Board								MIN DETH	CTABLE: 2	
	MONTH												
Day	JANUARY	FEBRUARY	MARCH	APRIL	MAY	JUNE	JULY	AUGUST	SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER	
1													
2													
3										30			
4										50			
5													
6													
7													
8													
9										78			
10													
11													
12													
13													
14													
15										55			
16													
17													
18													
19													
20													
21										AN			
22										<i>c</i> 0			
23										60			
24													
25													
20										60			
29										00			
20													
30													
31													
	-					-			-	_			
NO.:	0	0	0	0	0	0	0	0	0	5	0	0	
MAX:										/ð.			
MEAN:										38.2			
ANNUA	L OBSERVATION	S: 5	ANNUAL MEA	AN: 58.2	ANNUAL MAX	. 78.							

							RAW DA	TA REPORT				F	eb. 18, 2010
(81102) PM10 T	otal 0-10um SI	P									CAS NUMBER:	
	D 06 010 500											LATITUDE:	36.819167
SITE I	D: 06-019-500	I POC: J					STATI	E: (06) Califo	ornia			LONGITUDE:	-119.716389
COUNTY	: (UI9) Fresh	Э					AQCR	: (031) SAN J	JOAQUIN VALLEY			UTM ZONE:	11
CITY: 0	14218) CIOVIS		01110				URBA	NIZED AREA: (284	10) FRESNO, CA			UTM NORTHING:	4078053
SIIE A	OMMENTE: JOCA	VILLA AVE, CI	JUVIS		IAME (#) TO CLO	VTC 000 N VT	LAND	USE: RESIDENT	IAL			UTM EASTING:	257704
MONITO	DECOMMENTS: LOCA	MW UT_VOLUME (MAINIENANCE I	FDDA ANDEDSON 1	NAME (#) IS CLU 200 ggt tnift	VIS-900 N VI	LOCA	TION SETTING:	URBAN AND CEN	NTER CITY		ELEVATION-MSL:	86
MONTIO	R COMMENTS. C	HW HI-VOLOHE .	MHELER W/ SII	ERRA ANDERSON I.	200 331 INDEI							PROBE HEIGHT:	6
SUPPOR	T AGENCY: (09	45) San Joaqui	n Valley Unif	fied Air Polluti	on Control Dis	trict							
MONITO	R TYPE: SLAMS						REP	ORT FOR: 200	8		DURATIO	N: 24 HOURS	
COLLEC	TION AND ANAL	YSIS METHOD:	(063) HI-VOL 3	SA/GMW-1200 GRA	VIMETRIC						UNITS:	Micrograms/cubic meter	(25 C)
PQAO: (0145) Califor	nia Air Resour	cces Board								MIN DET	ECTABLE: 2	
	MONTH												
Dav	JANUARY	FEBRUARY	MARCH	APRIL	MAY	JUNE	JULY	AUGUST	SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER	
1													
2										2.2			
3										32			
5													
6													
7													
8													
9										63 IJ			
10													
11													
12													
13													
14													
15										62			
16													
17													
18													
19													
20													
21										46			
22													
23													
25													
26													
23										63			
28										00			
29													
30													
31													
NO -	0	0	0	0	^	,		0	0	F	0	0	
NU.:	U	U	0	0	U	l	, 0	0	U	63	U	U	
MEAN.										53.2			
MEAN:										55.2			
ANNUA	L OBSERVATION	IS: 5	ANNUAL MEA	AN: 53.2	ANNUAL MAX	<: 63.							

						RAW DA	TA REPORT				F	eb. 18, 2010
(81102) PM10 Total	0-10um STP										CAS NUMBER:	
SITE ID: 06-029-0010 COUNTY: (029) Kern CITY: (03526) Bakersfiel SITE ADDRESS: 1128 GOLD SITE COMMENTS: INSTRUME MONITOR COMMENTS: GMW H	POC: 1 d EN STATE HI NTS HOUSED : I-VOLUME SA	GHWAY, BAKERS IN OFFICE TYP MPLER W/ SIER	FIELD E TRAILER RA ANDERSON 120	0 SSI INLET		STATE AQCR URBAI LAND LOCA	: (06) Califorr : (031) SAN JOP NIZED AREA: (0680) USE: COMMERCIAL FION SETTING:	nia AQUIN VALLEY) BAKERSFIELD, URBAN AND CEN	CA IER CITY		LATITUDE: LONGITUDE: UTM ZONE: UTM NORTHING: UTM EASTING: ELEVATION-MSL: PROBE HEIGHT:	35.385556 -119.014722 11 3917435 317002 151
SUPPORT AGENCY: (0944) S MONITOR TYPE: SLAMS COLLECTION AND ANALYSIS PQAO: (0145) California	San Joaquin METHOD: (0 Air Resourc	County APCD 63) HI-VOL SA es Board	/GMW-1200 GRAVI	METRIC		REP	ORT FOR: 2008			DURATION UNITS: M MIN DETE	1:24 HOURS Micrograms/cubic meter CCTABLE:2	(25 C)
MONTH Day JANUARY FE 1	BRUARY	MARCH	APRIL	МАҮ	JUNE	JULY	AUGUST	SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER	
2 3 4									AJ			

P 267 rj

AN

267. 144.3 1 Values marked with 'P' exceed the PRIMARY STANDARD of: 155 ANNUAL OBSERVATIONS: ANNUAL MEAN: 144.3 ANNUAL MAX: 267.

Note: Qualifier codes with regional concurrence are shown in upper case, and those without regional review are shown in lower case. An asterisk ("*") indicates that the region has reviewed the value and does not concur with the qualifier.

NO.:

MAX:

MEAN:

1 Values marked with 'S' exceed the SECONDARY STANDARD of: 155

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY AIR QUALITY SYSTEM

RAW DATA REPORT

Feb. 18, 2010

	(81102)	PM10 To	tal 0-10)um STP																		CAS	NUMBER	:		
CITE	TD: 06-0	29-0010		POC · 3																		LAT	ITUDE:	3	5.38555	6
COUNT	ID: 00-0	V		POC: 5									STATE	: (06)	Califo	rnia						LON	IGITUDE:	-	119.014	722
COUNI	1: (029)	Kern	c										AQCR:	(031) SAN J	OAQUIN V	ALLEY					UTM	I ZONE:	1	1	
CITY:	(03526)	Bakersi	tield										URBAN	IZED AR	EA: (068	0) BAKER	SFIELD,	CA				UTM	1 NORTHI	NG: 3	917435	
SITE	ADDRESS:	: 1128 0	GOLDEN S'	TATE HIG	GHWAY, BI	AKERSFIE	ELD						LAND	USE: C	OMMERCIA	AL						UTM	1 EASTIN	G: 3	17002	
SITE	COMMENTS	S: INSTR	UMENTS H	HOUSED I	N OFFICE	E TYPE T	RAILER						LOCAT	ION SET	ring:	URBAN	AND CEI	NTER CIT	Y			ELF	VATION-	MSL: 1	51	
MONIT	OR COMME	ENTS:																				PRC	BE HEIG	нт: 5		
SUPPO	RT AGENO	~v. (094	4) San .	Ioaquin	County Z	PCD																				
MONIT	OR TVPF	• ST.AMS	-1) ban c	ouquin	councy i	II OD							DEDODT	FOD.	OCTOBES	2 20	108			D		1 HOUR				
COLLE	CTION AN	UD ANALV	CTC METI	JOD · MIII	TTTTT M	ETUODO							REFORI .	FOR:	OCIODEI	. 2.	,00			11	NTTC . Miz	arograme	/cubic r	notor (2	5 (1)	
DOTO	ODC. (01	AEL Col	ifornia	Air Doo	ovroca T	LETITOD5														0 M	INTID. MIC	TADIE.	/ CUDIC I	Neter (2	5 ()	
PQAO	UNG: (UI	143) Cal	IIOIIIIa	AII Kes	ources r	board														141	IN DEIEC	IADLE:				
HC	JUR	0100	0000	0000	0.400	0500	0.000	0700	0000	0000	1000	1100	1000	1000	1 4 0 0	1500	1 6 0 0	1700	1000	1000	0000	01.00	0000	0000	0.5.0	MEAN
DAY	0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	OBS	PIEAN
1	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	0	
2	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	0	
3	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	0	
4	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	0	
5	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	0	
6	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	0	
7	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	0	
8	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	0	
9	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	0	
10	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	0	
11	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	0	
12	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	0	
13	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	0	
14	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	0	
15	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	0	
16	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	0	
17	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	0	
18	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	0	
19	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	0	
20	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	0	
21	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	0	
22	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	BA	BA	AQ	AQ	AQ	AQ	AQ	AQ	AQ	AQ	AQ	AQ	0	
23	AQ	AQ	AQ	AQ	AQ	AQ	AQ	AQ	AQ	AQ	AQ	AT	AT	AT	AT	113	77	92	107	118	167	156	146	131	9	123.0
24	116	129	99	103	107	87	101	159	106	105	134	96	69	90	63	76	89	102	97	117	127	140	142	118	24	107.2
25	92	76	67	72	61	56	57	93	75	71	68	89	104	104	116	118	104	93	97	155	128	116	123	116	24	93.8
26	91	95	86	84	78	79	74	67	77	69	71	71	58	63	68	65	79	89	91	137	126	131	131	103	24	86.8
27	105	76	92	89	92	147	85	114	166	150	100	120	120	120	115	113	101	114	164	141	161	131	118	115	24	118.7
28	118	98	125	131	141	122	175	210	185	159	169	162	157	147	149	149	129	147	155	157	124	131	142	152	24	147.3
29	157	151	125	119	130	128	205	185	175	134	140	150	137	155	142	128	141	163	191	167	144	127	142	121	24	148.2
30	92ri	60ri	83ri	63ri	98ri	83ri	132rj	135rj	215rj	1000ri	1000ri	1000rj	971rj	249ri	816rj	970ri	970ri	114ri	265ri	559ri	277rj	109rj	55ri	50ri	24	390.3
31	44	45	44	58	58	35	40	46	64	53	28	45	54	56	45	38	50	53	35	31	40	53	58	58	24	47.1
NO	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
NO.:	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	9	9	9	9	9	9	9	9	9		
MAX:	101.0	151.	125.	131.	141.	14/.	205.	210.	215.	1000.	1000.	1000.	9/1.	249. 100 C	810.	970.	970.	103.	265.	559.	211.	101 6	146.	152.		
AVG:	101.9	91.3	90.1	89.9	95.6	92.1	108.6	126.1	132.9	21/.6	213.8	216.6	208.8	123.0	189.3	196.7	193.3	10/.4	133.6	1/2.8	143.8	121.0	11/.4	10/.1		

MONTHLY OBSERVATIONS: 201 MONTHLY MEAN: 141.5 MONTHLY MAX: 1000.

Feb. 18, 2010

(8	31102) PM10 1	Cotal 0-10um S	TP									CAS NUMBER:	
SITE II COUNTY: CITY: (): 06-029-001 (029) Kern 48452) Mojave	1 POC:	1				STATE:	: (06) Califo (033) SOUTH	rnia EAST DESERT			LATITUDE: LONGITUDE: UTM ZONE:	35.050556 -118.146389 11
SITE AI SITE CO MONITOF	DDRESS: 923 DMMENTS: ARB R COMMENTS: (POOLE STREET, SITE NAME (NU SMW HI-VOLUME	MOJAVE, CA 93 MBER) IS MOJAV SAMPLER W/ SIE	501 E-923 POOLE ST RRA ANDERSON 12	(1500252). AT MG 200 SSI INLET	DJAVE AIRPORT	URBAN LAND U ANIMAI LOCAT	IZED AREA: (0680 USE: MOBILE ION SETTING:)) BAKERSFIELD, RURAL	CA		UTM NORTHING: UTM EASTING: ELEVATION-MSL: PROBE HEIGHT:	3879053 395450 853
SUPPORT	AGENCY: (01	45) Californi	a Air Resource:	s Board							DURATION	: 24 HOURS	
MONITOR	R TYPE: OTHER	VOIC METHOD.	(062) UT VOL 0	A (CMW 1200 CDA)	UTMETDIC.		REPO	RT FOR: 2008			UNITS: M	Micrograms/cubic mete	r (25 C)
POAO: ((0145) Califor	nia Air Resou	(005) HI-VOL 5 Irces Board	SA/GPW-1200 GRA	VIMEIRIC						MIN DETE	CTABLE: 2	- ()
- 2 (
Day	MONTH JANUARY	FEBRUARY	MARCH	APRIL	MAY	JUNE	JULY	AUGUST	SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER	
1													
2													
3										41			
4													
5													
0 7													
8													
9										154 IJ			
10													
11													
12													
14													
15										15			
16													
17													
18													
19													
20										21			
22													
23													
24													
25													
26 27										17			
28										± /			
29													
30													
31													
NO.:	0	0	0	0	0	0	0	0	0	5	0	0	
MAX:										154.			
MEAN:										49.6			
ANNUA	L OBSERVATIO	NS: 5	ANNUAL MEA	N: 49.6	ANNUAL MAX:	154.							

							RAW DAT	A REPORT				F	eb. 18, 2010
(81102) PM10 T	otal 0-10um SI	ſP									CAS NUMBER:	
SITE I COUNTY CITY: 0 SITE A SITE C MONITO	D: 06-029-0014 : (029) Kern 03526) Bakers DDRESS: 5558 OMMENTS: R COMMENTS: G	4 POC: 1 Sfield CALIFORNIA AVE MW HI-VOL W/ S	L E, BAKERSFIEL SA 1200 SSI I	D NLET - CARB PR	IMARY SAMPLER		STATE AQCR: URBAN LAND LOCAT	: (06) Califor (031) SAN JO IZED AREA: (0680 USE: MOBILE ION SETTING:	nia AQUIN VALLEY) BAKERSFIELD, URBAN AND CEN	CA TER CITY		LATITUDE: LONGITUDE: UTM ZONE: UTM NORTHING: UTM EASTING: ELEVATION-MSL: PROBE HEIGHT:	35.356111 -119.040278 11 3914247 314614 0
SUPPOR MONITO COLLEC PQAO: (T AGENCY: (014 R TYPE: SLAMS TION AND ANAL ³ 0145) Califor	45) California YSIS METHOD: nia Air Resour	Air Resource (063) HI-VOL rces Board	es Board SA/GMW-1200 GR	AVIMETRIC		REPC	NRT FOR: 2008			DURATIO UNITS: MIN DET	N: 24 HOURS Micrograms/cubic meter ECTABLE: 2	c (25 C)
Day 1 2	MONTH JANUARY	FEBRUARY	MARCH	APRIL	МАҮ	JUNE	JULY	AUGUST	SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER	
3										49			

5										49		
4												
5												
6												
7												
8												
9										P 256 rj		
10												
11										48		
12												
13												
14												
15										112		
16												
17												
18												
19												
20												
21										69		
22												
23												
24												
25												
26												
27										96		
28												
29												
30												
31												
NO.:	0	0	0	0	0	0	0	0	0	6	0	0
MAX:										256.		
MEAN:										105.0		

256.

Note: Qualifier codes with regional concurrence are shown in upper case, and those without regional review are shown in lower case. An asterisk ("*") indicates that the region has reviewed the value and does not concur with the qualifier.

ANNUAL OBSERVATIONS: 6 ANNUAL MEAN: 105.0 ANNUAL MAX:

1 Values marked with 'P' exceed the PRIMARY STANDARD of: 155 1 Values marked with 'S' exceed the SECONDARY STANDARD of: 155

Feb. 18, 2010

(81	102) PM10 To	tal 0-10um ST	P									CAS NUMBER:	
OTTO TO.	00 000 0014	D00. 0										LATITUDE:	35.356111
SILE ID:	(000) 7	POC: 2					SI	ATE: (06) Califor	nia			LONGITUDE:	-119.040278
COUNTY:	(U29) Kern						AQ	QCR: (031) SAN JO	AQUIN VALLEY			UTM ZONE:	11
CITY: (0.	3526) Bakersi	ield					UI	RBANIZED AREA: (0680) BAKERSFIELD,	CA		UTM NORTHING:	3914247
SITE ADD	DRESS: 5558 C	ALIFORNIA AVE	, BAKERSFIEL	D			L	AND USE: MOBILE				UTM EASTING:	314614
SITE COM	MENTS:						L	CATION SETTING:	URBAN AND CEN	TER CITY		ELEVATION-MSL:	0
MONITOR	COMMENTS: GM	W HI-VOL W/ S	A 1200 SSI II	NLET - CARB COL	LOCATED SAMPLER							PROBE HEIGHT:	
SUPPORT	AGENCY: (014	5) California	Air Resource	es Board									
MONITOR	TYPE: OTHER							SEPORT FOR. 2008			DURATION:	24 HOURS	
COLLECTJ	ION AND ANALY	SIS METHOD: (063) HI-VOL	SA/GMW-1200 GRA	VIMETRIC			dioni ron.			UNITS: Mi	.crograms/cubic meter	r (25 C)
PQA0:(01	145) Californ	ia Air Resour	ces Board								MIN DETEC	TABLE: 2	
	MONTH												
Dav	JANUARY	FEBRUARY	MARCH	APRIL	MAY	JUNE	JULY	AUGUST	SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER	

1												
2												
3										ΔN		
4										2114		
5												
6												
7												
8												
9										P 262 rj		
10										2		
11										59		
12												
13												
14												
15										111		
16												
17												
18												
19												
20												
21										68		
22												
23												
24												
25												
26												
27										96		
28												
29												
30												
31												
NO.:	0	0	0	0	0	0	0	0	0	5	0	0
MAX:										262.		
MEAN:										119.2		
ANNIIAT OD	PRIMATIONS.	5	ANNUAL MEAN.	110 2	ANNILAL MAX.	262	1 Valu	es marked with	'P' exceed th	ne PRIMARY STAND	ARD of: 155	
THINDAL ODD	LINALIONS:	J	ANNUAL MEAN:	117.4	introffic fund.	202.	1 Valu	es marked with	'S' exceed th	ne SECONDARY STA	NDARD of: 155	

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY AIR QUALITY SYSTEM

							RAW DAT	A REPORT					Feb. 18, 2010
(81102) PM10 T	otal 0-10um S	ΓP									CAS NUMBER:	
												LATITUDE:	35.623889
SITE I	D: 06-029-001	5 POC:	1				STATE	: (06) Califo	ornia			LONGITUDE:	-117.677222
COUNTY	: (029) Kern						AQCR:	(033) SOUTE	HEAST DESERT			UTM ZONE:	11
CITY:	(60/04) Ridged	rest					URBAN	IZED AREA: (000	00) NOT IN AN URE	BAN AREA		UTM NORTHING:	3942245
SITE A	DDRESS: IUU W	EST CALIFORNI.	A AVE, RIDGECR	ESI, CA			LAND	USE: COMMERCI	AL			UTM EASTING:	438673
MONITO	DE COMMENTE: CARB	SILE NUMBER .	CAMDIED M/ STE	DDA ANDEDCON 12	00 CCT INLET		LOCAT	ION SETTING:	URBAN AND CEN	NTER CITY		ELEVATION-MSL	701
MONIIO	R COMMENTS: G	NW HI-VOLOME	SAMPLER W/ SIE	KRA ANDERSON 12	UU SSI INLEI							PROBE HEIGHT:	3
SUPPOR	T AGENCY: (05	75) Kern Count	y APCD										
MONITO	R TYPE: SLAMS						REPC	RT FOR: 200)8		DURATIO	N: 24 HOURS	
COLLEC	TION AND ANAL	YSIS METHOD:	(063) HI-VOL S	A/GMW-1200 GRAV	IMETRIC						UNITS:	Micrograms/cubic met	er (25 C)
PQAO: (0145) Califor	nia Air Resou	rces Board								MIN DET	ECTABLE: 2	
	MONTH												
Dav	TANUARY	FFDDIIADV	MADOU	ADDTI	MAV	TIINE	TITI V	AUCUST	CEDTEMBED	OCTORER	NOVEMBED	DECEMBED	
Day	UANUARI	FEDROART	PIAICEI	AFRID	PAT	UONE	0011	A06031	JEF IEMDER	OCIOBER	NOVERBER	DECEMBER	
1													
2													
3										26			
4													
5													
10 7													
,													
9										57			
10										57			
11													
12													
13													
14													
15										27			
16													
17													
18													
19													
20													
21										31			
22													
23													
24													
25													
26										2.0			
27										29			
28													
30													
31													
91													
NO.:	0	0	0	0	0	0	0	0	0	5	0	0	
MAX:										57.			
MEAN:										36.0			
ANNUA	L OBSERVATION	IS: 5	ANNUAL MEA	N: 36.0	ANNUAL MAX:	57.							

						UNITED ST	ATES ENVIRON	MENTAL PROTECTIO	ON AGENCY				
							RAW DA	IA REPORT				1	Feb. 18, 2010
(8	1102) PM10 T	otal 0-10um SI	ΓP									CAS NUMBER:	
SITE ID COUNTY: CITY: (5 SITE AD SITE CO MONITOR	: 06-029-023; (029) Kern 3448) Oildal DRESS: 3311 MMENTS: ARB COMMENTS: G	e MANOR ST., OIJ SITE NUMBER 15 MW HI-VOLUME S	2 LDALE 500243 NEW SI SAMPLER W/ SIE	TE 10/83. RRA ANDERSON 12	00 SSI INLET		STATE AQCR URBAI LAND LOCA	2: (06) Califo : (031) SAN J NIZED AREA: (068 USE: INDUSTRI TION SETTING:	Ornia NOAQUIN VALLEY 0) BAKERSFIELD, AL SUBURBAN	CA		LATITUDE: LONGITUDE: UTM ZONE: UTM NORTHING: UTM EASTING: ELEVATION-MSL: PROBE HEIGHT:	35.438889 -119.015833 11 3923383 317022 180
SUPPORT MONITOR	AGENCY: (01 TYPE: SLAMS	15) California	a Air Resource	s Board			REP	ORT FOR: 200	8		DURATIO	N: 24 HOURS	
COLLECT PQAO: (0	ION AND ANAL 145) Califor	YSIS METHOD: nia Air Resour	(063) HI-VOL S rces Board	SA/GMW-1200 GRAV	IMETRIC						UNITS: MIN DET	Micrograms/cubic mete ECTABLE: 2	r (25 C)
	MONTH												
Day	JANUARY	FEBRUARY	MARCH	APRIL	MAY	JUNE	JULY	AUGUST	SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER	
1													
2 3 4										57			
5													
6													
7													
9										P 224 ri			
10													
11													
12													
13													
15										105			
16													
17													
18													
20													
21										72			
22													
23													
24													
25													
20										108			
28													
29													
30													
31													
NO.:	0	0	0	0	0	0	0	0	0	5	0	0	
MAX:										224.			
MEAN:								1 Values marked	with 'P' exceed	the PRIMARY S	TANDARD of: 15	5	
ANNUAI	OBSERVATION	S: 5	ANNUAL MEA	N: 113.2	ANNUAL MAX:	224.		1 Values marked	with 'S' exceed	the SECONDARY	STANDARD of:	155	

Feb.	18,	2010

(8110	02) PM10 Tota	1 0-10um ST	P									CAS NUMBER:	
SITE ID: 0 COUNTY: (0 CITY: (162: SITE ADDRE SITE COMME MONITOR CC	06-031-0004 031) Kings 24) Corcoran ESS: 1520 PAT ENTS: SITE IS DMMENTS: PARA	POC: 1 TTERSON AV., PARALLEL M	CORCORAN ONITOR TO 06-03 O 06-031-0003.	31-0003 WHICH I GMW HI-VOL SA	S TO BE CLOSED № 1200 SSI INLET	4ID 97	STATE: AQCR: URBANI LAND U LOCATI	(06) Califor (031) SAN JO IZED AREA: (0000 JSE: RESIDENTIA ION SETTING:	nia AQUIN VALLEY) NOT IN AN URB AL SUBURBAN	AN AREA		LATITUDE: LONGITUDE: UIM ZONE: UIM NORTHING: UIM EASTING: ELEVATION-MSL: PROBE HEIGHT:	36.101389 -119.565833 11 3998073 269015 61 6
SUPPORT AG	GENCY: (0945)	San Joaqui	n Valley Unifie	d Air Pollutio	on Control Distri	.ct		2008			DURATION	: 24 HOURS	
COLLECTION	N AND ANALYSI	S METHOD: (063) HI-VOL SA	/GMW-1200 GRAVI	IMETRIC		REPO.	RT FOR: 2000			UNITS: M	licrograms/cubic mete	r (25 C)
PQAO: (0145	5) California	Air Resour	ces Board								MIN DETE	CTABLE: 2	
M	ONTH												
Dav JA	ANUARY I	FEBRUARY	MARCH	APRIL	MAY	JUNE	JULY	AUGUST	SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER	
1													
1													
3										51			
4										01			
5													
6													
7													
8													
9										P 306 rj			
10													
11													
12													
1.0													
15										107			
16										207			
17													
18													
19													
20													
21										82			
22													
23													
24													
20 26													
27										120			
28										120			
29													
30													
31													
NO.:	0	0	0	0	0	0	0	0	0	5	0	0	
MAX:		-	-	-			-	-	*	306.	-		
MEAN:										133.2			
ANNUAL O	BSERVATIONS	5	ANNIIAI, MFAN	• 133.2	ANNUAL MAX:	306.	1	Values marked w	with 'P' exceed	the PRIMARY ST	ANDARD of: 155		
			-	. 100.4			1	Values marked w	with 'S' exceed	the SECONDARY	STANDARD of: 1	55	
Note: Qu	alifier code	s with regi	onal concurrenc	e are shown in	upper case, and	l those withou	ıt						

(8	1102) PM10 T	otal 0-10um SI	P									CAS NUMBER:	
SITE ID	: 06-031-000	4 POC: 3	5									LATITUDE:	36.101389
COUNTY:	(031) Kings						STATE	: (06) Califo	rnia			LONGITUDE:	-119.565833
CITY: (16224) Corcor	an					AQCR:	(031) SAN J	OAQUIN VALLEY			UTM ZONE:	11
SITE AD	DRESS: 1520	PATTERSON AV.,	CORCORAN				URBAN	IIZED AREA: (000	0) NOT IN AN URE	BAN AREA		UTM NORTHING:	3998073
SITE CC	MMENTS: SITE	IS PARALLEL M	IONITOR TO 06-0	031-0003 WHICH	IS TO BE CLOSED	MID 97	LAND	USE: RESIDENTI	IAL			UTM EASTING:	269015
MONITOF	COMMENTS: G	MW HI-VOL SSI	SIERRA ANDERS	ON COLLOCATED			LOCAT	ION SETTING:	SUBURBAN			PROBE HEIGHT:	61
SUPPORI	AGENCY: (09	45) San Joaqui	n Valley Unifi	led Air Polluti	on Control Dist	rict		2000	2		DURATION	: 24 HOURS	
MONITOR	TYPE: OTHER	VOIG METHOD.	(0(2) UT VOL 0	1/CMM 1000 CD31	ITME TO TO		REPC	DRT FOR: 2008	5		UNITS: M	icrograms/cubic mete	r (25 C)
DODO: ((10N AND ANAL	ISIS MEIHOD:	(UGS) HI-VUL S.	A/GMW-1200 GRAV	/IMEIRIC						MIN DETE	CTABLE. 2	(10 0)
PQAU: ((J145) Calllor	nia Air Resour	ces Board								MIN DELE	CIABLE: 2	
	MONTH												
Day	JANUARY	FEBRUARY	MARCH	APRIL	MAY	JUNE	JULY	AUGUST	SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER	
1													
2										50			
3										53			
4 5													
6													
7													
8													
9										P 350 rj			
10													
11													
12													
13													
14													
15										112			
10													
19													
19													
20													
21										88			
22													
23													
24													
25													
26													
27										124			
28													
29													
3U 31													
J 1													
NO.:	0	0	0	0	0	0	0	0	0	5	0	0	
MAX:										350.			
MEAN:							1	Values marked	with 'P' exceed	140.4 the PRIMARY ST	ANDARD of . 155		
ANNUA:	L OBSERVATION	IS: 5	ANNUAL MEAD	N: 145.4	ANNUAL MAX	: 350.	- 1	Values marked	with 'S' exceed	the SECONDARY	STANDARD of 1	55	
Note	Qualifier c	odes with regi	onal concurrer	ice are shown i	n upper case, a	nd those witho	1 11	aruco markeu		CITC DECOMDARY			

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY AIR QUALITY SYSTEM

						RAW DAT	A REPORT					Feb. 18, 2010
(81102) PM10	Total 0-10um S	TP									CAS NUMBER:	
SITE ID: 06-031-0 COUNTY: (031) Kin CITY: (16224) Cor SITE ADDRESS: 152 SITE COMMENTS: SI MONITOR COMMENTS:	004 POC: gs coran 20 PATTERSON AV. TE IS PARALLEL M GMW HI-VOL SSI	4 , CORCORAN MONITOR TO 06 SIERRA ANDER	-031-0003 WHICH SON ALTERNATE 6	I IS TO BE CLO 5 DAY SAMPLING	SED MID 97	STATE AQCR: URBAN LAND LOCAT	LATITUDE: LONGITUDE: UTM ZONE: UTM NORTHING: UTM EASTING: ELEVATION-MSL: PROBE HEIGHT:	36.101389 -119.565833 11 3998073 269015 61				
SUPPORT AGENCY: (MONITOR TYPE: OTH COLLECTION AND AN PQAO: (0145) Calif	0945) San Joaqui ER WALYSIS METHOD: Fornia Air Resou	in Valley Uni (063) HI-VOL rces Board	fied Air Pollut SA/GMW-1200 GR#	ion Control D AVIMETRIC	istrict	REPC	N: 24 HOURS Micrograms/cubic met TECTABLE: 2	er (25 C)				
MONTH	FEDDIADY	MADOU	ADDII	MAV	TIME		AUCULCT	CEDTEMBED	OCTOBED	NOVEMBED		
Day JANOARY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	FEBRUARY	MARCH	APRIL	МАХ	JUNE	20FX	AUGUST	SEPTEMBER	49 42	NOVEMBER	DECEMBER	
16 17 18 19 20 21									107			
22 23 24									152			

27 28 29 30 P 224 rj 31 5 NO.: 0 0 0 0 0 0 0 0 0 0 MAX: 224. 114.8 MEAN: 1 Values marked with 'P' exceed the PRIMARY STANDARD of: 155 ANNUAL OBSERVATIONS: 5 ANNUAL MEAN: 114.8 ANNUAL MAX: 224. 1 Values marked with 'S' exceed the SECONDARY STANDARD of: 155

Note: Qualifier codes with regional concurrence are shown in upper case, and those without regional review are shown in lower case. An asterisk ("*") indicates that the region has reviewed the value and does not concur with the qualifier.

25 26

0

Feb. 18, 2010

	(81102)	PM10 To	tal 0-10	Dum STP																		CAS	S NUMBER	:		
SITE	ID: 06-0	31-0004		POC: 7																		LAT	TITUDE:	3	6.1013	89
COUNT	Y: (031)	Kings											STATE	: (06)	Califo:	rnia						LON	GITUDE:	-	119.56	5833
CITY:	(16224)	Corcora	an										AQCK:	(U3)	I) SAN J	JAQUIN V	ALLEY	AN ADEA				UIT	4 ZONE:	1	1	
SITE	ADDRESS:	: 1520 P	PATTERSO	N AV., C	CORCORAN						LAND USE · RESIDENTIAL								UIT	I NORIHI. 4 EACTIM	NG: 3	998073 69015				
SITE	COMMENTS	S: SITE	IS PARAI	LLEL MON	NITOR TO	06-031-0	0003 WHI	CH IS TO	BE CLO	OSED MIE	97		LOCAT	TON SET	TING.	SUBUR	BAN					ELF	VATION-	9. 2 MSL: 6	1	
MONIT	OR COMME	ENTS:											200111	1011 021		002010	21111					PRO	DBE HEIG	HT: 5	-	
SUPPC	RT AGENC	CY: (094	5) San 3	Joaquin	Valley (Unified A	Air Poll	ution Co	ntrol I	District																
MONIT	OR TYPE:	SLAMS											REPORT	FOR:	OCTOBER	. 20	08			D	URATION:	1 HOUR				
COLLE	CTION AN	ND ANALY	SIS METH	HOD: (0	79) INST	RUMENTAL	-R&P SA2	246B-INL	ET TEOM	I										U	NITS:Mic	rograms	/cubic m	neter (2	5 C)	
PQAO	ORG: (01	45) Cal	ifornia	Air Res	ources E	loard														М	IN DETEC	TABLE:	-50			
HC	DUR																									
DAY	0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	OBS	MEAN
1	95	69	68	79	100	131	105	103	73	43	72	92	84	83	115	134	133	140	144	186	484	122	46	97	24	116.6
2	88	71	0	25	43	108	134	103	86	93	102	119	139	127	132	141	166	129	128	114	90	87	40	45	24	96.3
3	33	20	-7	6	15	30	66	38	.7	0	32	39	45	46	42	59	59	.78	131	148	61	.78	11	39	24	45.4
4	90	/9	//	31	16	46	38	8	10	25	18	3	17	0	10	31	10	49	21	4	9	25	10	5	24	24.9
5	10	20	24	21	20	40	9	20	10	54	16	12	1/	14	10	1 / E 2	1Z E 1	62	20	121	51	20	19	57	24	14.3
7	40 63	51	31	21	20	22	37	101	49	D74	D7 T0	12	56	50	50	62	01	79	70	80	79	96	00	97	24	47.0
8	88	63	69	78	78	75	90	107	87	71	50	65 65	46	44	49	68	92	89	105	106	91	91	86	59	24	77 0
9	49ri	47ri	41ri	42ri	50ri	54ri	85ri	73ri	245ri	AT	AT	AT	851ri	711ri	632ri	680ri	771ri	673ri	352ri	162ri	85ri	62ri	64ri	49ri	21	275.1
10	47	38	31	35	26	39	56	64	93	235	286	217	225	165	142	180	172	176	89	44	41	40	54	44	24	105.8
11	37	23	17	20	21	29	31	39	42	38	44	48	43	78	79	74	80	69	71	59	63	46	36	37	24	46.8
12	33	27	38	40	38	44	51	58	63	51	46	38	35	34	25	23	30	39	53	57	55	56	48	42	24	42.7
13	42	68	70	64	68	63	59	77	58	61	58	38	41	40	38	48	61	92	84	91	103	70	61	68	24	63.5
14	70	69	94	91	78	83	99	92	80	104	72	62	48	49	43	57	63	92	129	153	167	126	119	111	24	89.6
15	95	107	135	140	126	128	138	127	91	78	90	89	83	71	98	101	109	148	113	90	96	96	108	128	24	107.7
16	100	101	84	76	110	123	107	138	186	104	112	86	75	84	81	82	100	119	121	131	106	95	118	147	24	107.8
17	120	144	128	97	93	136	129	177	194	166	162	106	54	63	61	65	144	180	159	120	127	77	98	109	24	121.2
18	73	120	93	95	92	102	152	99	111	109	125	146	164	131	83	74	86	96	112	112	79	61	38	34	24	99.5
19	46	48	32	18	21	24	29	49	27	14	26	42	30	40	22	43	AQ	68	86	134	83	64	55	47	23	45.6
20	35	26	30	17	28	26	23	54	69	69	55	78	58	58	67	52	63	98	80	71	69	70	66	63	24	55.2
21	47	43	44	39	47	47	69	90	69	47	51	58	64	73	76	80	94	110	117	142	133	121	107	105	24	78.0
22	102	89	110	75	87	80	107	148	172	173	103	79	69	77	84	144	141	166	161	159	144	93	111	100	24	115.6
23	110	100	87	97	60	58	115	139	110	123	139	110	57	BA	39	51	85	102	116	157	171	174	188	153	23	110.5
24	133	134	116	109	113	114	135	208	262	183	158	106	96	105	83	95	149	152	141	138	142	132	160	135	24	137.5
25	122	168	164	126	107	103	106	158	105	100	108	89	79	64	88	128	98	113	96	94	102	102	122	122	24	01 1
20	125	97	95	69	93	18	102	127	70	110	/0	02	04	48	50	70	102	140	101	105	92	0.2	90	132	24	91.1
28	79	75	74	80	81	78	89	190	144	133	99	80	24 45	44	42	70 91	89	126	102	138	167	140	159	30 127	24	103 0
29	126	104	85	69	82	84	110	131	117	168	166	101	45	65	42 64	77	123	137	128	140	128	154	189	145	24	114 9
30	134ri	132ri	100ri	73ri	66ri	108ri	85ri	76ri	159ri	128ri	-00 86ri	291ri	425ri	870ri	914ri	371ri	355ri	212ri	202ri	97ri	151ri	123ri	42ri	54ri	24	218.9
31	19	11	2	23	25	4	21	35	40	32	39	27	36	13	42	45	65	54	54	40	20	42	47	52	24	32.8
NO.:	31	31	31	31	31	31	31	31	31	29	29	29	31	30	31	31	30	31	31	31	31	31	31	31		
MAX:	134.	168.	164.	140.	126.	136.	152.	208.	262.	235.	286.	291.	851.	870.	914.	680.	771.	673.	352.	186.	484.	174.	189.	170.		
AVG:	76.5	72.7	65.3	59.6	61.2	69.2	80.9	97.1	99.2	89.7	85.5	82.3	103.3	112.3	108.9	105.3	122.7	127.7	112.8	108.1	107.5	86.3	81.7	83.3		

MONTHLY OBSERVATIONS: 736 MONTHLY MEAN: 91.6 MONTHLY MAX: 914.

					UNITED ST	ATES ENVIRONI AIR QUAL	MENTAL PROTECT: .ITY SYSTEM	ION AGENCY				
						RAW DA	IA REPORT				I	Feb. 18, 2010
(81102) PM10	Total 0-10um SI	P									CAS NUMBER:	
SITE ID: 06-031-0 COUNTY: (031) Kin CITY: (70122) Sant SITE ADDRESS: 172 SITE COMMENTS:	500 POC: 1 gs La Rosa Rancheri 25 Jersey Ave.	a				STATE AQCR URBAI LAND LOCA	C: (06) Calif : (031) SAN NIZED AREA: (00 USE: AGRICUL USE: AGRICUL TION SETTING:	Fornia JOAQUIN VALLEY 100) NOT IN AN U TURAL RURAL	RBAN AREA		LATITUDE: LONGITUDE: UTM ZONE: UTM NORTHING: UTM EASTING: ELEVATION-MSL:	36.233318 -119.765251 11 4013172.63 251475.44 68
MONITOR COMMENTS:											PROBE HEIGHT:	
SUPPORT AGENCY: (MONITOR TYPE: TRI COLLECTION AND AN PQAO:(0145) Calif MONTH	542) Santa Rosa BAL MONITORS ALYSIS METHOD: Tornia Air Resour	Indian Communit (063) HI-VOL SA cces Board	y of Santa Ros /GMW-1200 GRAV:	a Rancheria, CA IMETRIC		REP	ORT FOR: 20	08		DURATION UNITS: M MIN DETE	: 24 HOURS Sicrograms/cubic mete CTABLE: 2	r (25 C)
Day JANUARY	FEBRUARY	MARCH	APRIL	MAY	JUNE	JULY	AUGUST	SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER	
1												
2 3 4 5 6									63			
7												
9									P 286 rj			
10									-			
11												
12												
13												
15									114			
16												
17												
19												
20												
21									83			
22												
23												
25												
26												
27									104			
29												
30												
31												
NO.: 0	0	0	0	0	0	0	0	0	286	0	0	
MEAN:									130.0			
ANNIIAL OBSERVAT	IONS: 5	ANNIIAT MEAN	• 130 0	ANNIJAT. MAX•	286		1 Values marke	d with 'P' excee	ed the PRIMARY S	TANDARD of: 155		
INNOTE ODJERVAL	J. J.	ANNOAL PILAN	. 100.0	innoith rain.	200.		1 Values marke	d with 'S' excee	ed the SECONDARY	STANDARD of: 1	55	

UNITED	STATES	ENVI	RONMEN	JTAL	PROTECTION	AGENCY
		AIR	QUALIT	Y SY	STEM	
		DAM		DED	יסר	

							RAW I	DATA REPORT					Feb. 18, 2010
(8	31102) PM10 T	otal 0-10um SI	ſP									CAS NUMBER:	
SITE II COUNTY CITY: (SITE AI SITE CO MONITOP	0: 06-031-100 : (031) Kings 31960) Hanfor DDRESS: 807 S DMMENTS: RELO R COMMENTS: G	4 POC: 3 outh IRWIN ST CATED HANFORD- MW HI-VOLUME S	., HANFORD -CAMPUS SITE & SAMPLER W/ SIE	: ADDED NO2 MON ERRA ANDERSON 1	ITORING ARB #160 200 SSI INLET	00716	STA AQ(URI LAI LO(ATE: (06) Cali CR: (031) SAN BANIZED AREA: (0 ND USE: RESIDEN CATION SETTING:	fornia JOAQUIN VALLEY 000) NOT IN AN U VTIAL SUBURBAN	RBAN AREA		LATITUDE: LONGITUDE: UTM ZONE: UTM NORTHING: UTM EASTING: ELEVATION-MSL PROBE HEIGHT:	36.314444 -119.643611 11 4021869 262656 99
SUPPOR MONITOR COLLEC PQAO:(F AGENCY: () R TYPE: SLAMS FION AND ANAL 0145) Califor	YSIS METHOD: nia Air Resour	(063) HI-VOL S rces Board	5A/GMW-1200 GRA	WIMETRIC		R	EPORT FOR: 20	008	DURATION: 24 HOURS UNITS: Micrograms/cubic meter (25 C) MIN DETECTABLE: 2			
	MONTH												
Day	JANUARY	FEBRUARY	MARCH	APRIL	MAY	JUNE	JULY	AUGUST	SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER	
1													
2													
3										55			
4													
5													
7													
8													
9										P 226 rj			
10													
11													
12													
14													
15										106			
16													
17													
18													
19													
20										AG			
22													
23													
24													
25													
26										111			
27										111			
29													
30										P 229 rj			
31													
NO.:	0	0	0	0	0	0		0 (0 0	5	0	0	
MAX:										229.			
MEAN:										145.4			
ANNUA	L OBSERVATION	1S: 5	ANNUAL MEA	AN: 145.4	ANNUAL MAX	: 229.		2 Values marke	ed with 'P' excee	d the PRIMARY ST	ANDARD of: 155		
Note	Qualifier c	odes with regi	onal concurre	nce are shown	in upper case	and those with	nout	2 Values marke	ed with 'S' excee	d the SECONDARY	STANDARD of: 1	55	
UNITED STATES ENVIRONMENTAL PROTECTION AGENCY AIR QUALITY SYSTEM RAW DATA REPORT

Feb. 18, 2010

(SITE I COUNTY CITY: (SITE A SITE C MONITO	81102) PM10 D: 06-107-200 : (107) Tulay 82954) Visal DDRESS: 310 OMMENTS: ARB R COMMENTS:	Fotal 0-10um S 2 POC: ia N CHURCH ST, V SITE NUMBER 5 GGW HI-VOL W/	IP 2 ISALIA 400568. NEW SI SA 1200 SSI IN	ITE 7/79. SPM : NLET - CARB PR	SO2. NO2 DATA F IMARY SAMPLER	FROM THIS SITH	S A U E BEFORE 1/ L L	TATE: (06) C QCR: (031) RBANIZED AREA: AND USE: COMI OCATION SETTIN	alifornia SAN JOAQUIN (8779) VIS MERCIAL MG: URB	N VALLEY SALIA, CA AN AND CENTE	R CITY		CAS NUMBER: LATITUDE: LONGITUDE: UTM ZONE: UTM NORTHING: UTM EASTING: ELEVATION-MSL: PROBE HEIGHT:	36.332222 -119.290278 11 4023031 294430 97
SUPPORT AGENCY: (0145) California Air Resources Board MONITOR TYPE: SLAMS COLLECTION AND ANALYSIS METHOD: (063) HI-VOL SA/GMW-1200 GRAVIMETRIC								REPORT FOR:	2008		DURATION: 24 HOURS UNITS: Micrograms/cubic meter (25 C)			
PQAO:(0145) California Air Resources Board											MIN DETE	CTABLE: 2		
	MONTH		MARGU	10011							0000000	November		
Day	JANUARY	FEBRUARY	MARCH	APRIL	MAY	JUNE	JULY	AUGUS	I' SE	SPTEMBER	OCTOBER	NOVEMBER	DECEMBER	
1														
3											38			
4														
5														
6 7														
8														
9											104			
10														
12														
13														
14														
15											65			
16														
18														
19														
20														
21											78			
22														
23														
25														
26														
27											91			
28														
29 30														
31														
NO.: Max.	0	0	0	0	0		0	0	0	0	5	0	0	
MEAN:											75.2			

ANNUAL OBSERVATIONS: 5 ANNUAL MEAN: 75.2 ANNUAL MAX: 104.

Note: Qualifier codes with regional concurrence are shown in upper case, and those without regional review are shown in lower case. An asterisk ("*") indicates that the region has reviewed the value and does not concur with the qualifier.

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY AIR QUALITY SYSTEM RAW DATA REPORT

QUALIFIER CODES:

Qualifier Code	Qualifier Description	Qualifier Type
AG	Sample Time out of Limits	NULL
AJ	Filter Damage	NULL
AN	Machine Malfunction	NULL
AQ	Collection Error	NULL
AT	Calibration	NULL
BA	Maintenance/Routine Repairs	NULL
IJ	High Winds	INFORM
rj	High Winds	NAT

Note: Qualifier codes with regional concurrence are shown in upper case, and those without regional concurrence are shown in lower case.