

MAR 1 3 2014

Dennis Champion Occidental of Elk Hills, Inc. 10800 Stockdale Highway Bakersfield, CA 93311

Re: Notice of Preliminary Decision – Emission Reduction Credits Facility Number: S-2234 Project Number: S-1133368

Dear Mr. Champion:

Enclosed for your review and comment is the District's analysis of Occidental of Elk Hills, Inc.'s application for Emission Reduction Credits (ERCs) resulting from the shutdown of the 35R gas plant and three IC engines driving gas compressors, at Sections 26 and 35, Township 30 South, Range 23 East. The quantity of ERCs proposed for banking is 60,076 lb-NOx/yr, 57 lb-SOx/yr, 3,994 lb-PM10/yr, 69,454 lb-CO/yr, and 49,531 lb-VOC/yr.

The notice of preliminary decision for this project will be published approximately three days from the date of this letter. After addressing all comments made during the 30-day public notice comment period, the District intends to the issue the ERCs. Please submit your written comments on this project within the 30-day public comment period, as specified in the enclosed public notice.

Thank you for your cooperation in this matter. If you have any questions regarding this matter, please contact Mr. Stephen Leonard of Permit Services at (661) 392- 5605.

Sincerely

David Warner Director of Permit Services

DW: SPL/cp

Enclosures

- cc: Mike Tollstrup, CARB (w/enclosure) via email
- cc: Gerardo C. Rios, EPA (w/enclosure) via email

Seyed Sadredin Executive Director/Air Pollution Control Officer

Northern Region 4800 Enterprise Way Modesto, CA 95356-8718 Tel: (209) 557-6400 FAX: (209) 557-6475 Central Region (Main Office) 1990 E. Gettysburg Avenue Fresno, CA 93726-D244 Tel: (559) 230-6000 FAX: (559) 230-6061 Southern Region 34946 Flyover Court Bakersfield, CA 93308-9725 Tel: 661-392-5500 FAX: 661-392-5585

www.valleyair.org www.healthyairliving.com

San Joaquin Valley Air Pollution Control District ERC Application Review Shutdown of 35R Gas Plant and IC Engines					
Facility Name: Mailing Address:		Date: Engineer: Lead Engineer: Date:	Stephen Leonard		
Contact Person:	Mike Kelly, Vector Environmental				
Telephone:	661-323-1477, ext. 205				
Project #:	S-1133368				
Submitted:	August 13, 2013				
Deemed Complete:	January 6, 2014				

I. Summary:

Occidental of Elk Hills, Inc. (OEHI) owns and operates the Elk Hills Oil Fields. The primary business of this facility is the processing of extracted natural gas and natural gas liquids. The 35R Lean Oil Absorption Plant (LOAP) and three I.C. engine powered gas compressors have been shut down. The permits to operate for the gas plant and engines have been surrendered to the District. OEHI is applying for emission reduction credits (ERCs) for the associated shutdown and reduction in emissions.

The following emission reductions have been found to qualify for ERC banking:

	NO _x [lb/qtr]	SO _x [lb/qtr]	PM ₁₀ [lb/qtr]	CO [lb/qtr]	VOC [lb/qtr]
1 st Quarter	13,364	13	895	15,032	10,584
2 nd Quarter	11,182	12	877	14,680	10,957
3 rd Quarter	18,022	16	1,115	19,973	14,277
4 th Quarter	17,508	16	1,107	19,769	13,713

II. Applicable Rules:

- Rule 2201 New and Modified Stationary Source Review Rule (4/21/11)
- Rule 2301 Emission Reduction Credit Banking (1/19/12)
- Rule 4409 Rule 4409 Components at Light Crude Oil Production Facilities, Natural Gas Production Facilities, and Natural Gas Processing Facilities (4/20/05)
- Rule 4702 Internal Combustion Engines (11/14/13)

III. Location of Reduction:

The physical location of the equipment involved with this application is as follows:

Permit Unit	Section	Township	Range
S-2234-19	SE35	30 South	23 East
S-2234-27	SE35	30 South	23 East
S-2234-28	SE35	30 South	23 East
S-2234-127	26	30 South	23 East

IV. Method of Generating Reductions:

The emissions reduction are generated by the permanent shutdown of the 35R LOAP, District permit S-2234-19, two gas compressors driven by 4,000 bhp natural gas fired lean-burn I. C. engines, District permits S-2234-27 and S-2234-28, and one gas compressor driven by a 1,834 bhp natural gas fired rich-burn I. C. engine with non-selective catalytic reduction, District permit S-2234-127. The applicant surrendered the Permits to Operate (PTOs) for the associated equipment on March 21, 2013.

V. <u>Calculations:</u>

A. Assumptions and Emission Factors

Assumptions:

- Gas plant historically would operate 24 hours/day, 7 days/week.
- Reductions are considered surplus as gas production is now re-routed to a new, <u>fully offset</u> cryogenic gas plant onsite, issued District permits S-2234-216-0 through '-239-0 (see District project S1103628).
- Source test measured exhaust emissions for shutdown engines consistently lower than permitted emission factors or AP-42 emission factors.
- Measured VOC content of gas shall be applied to fugitive component emissions calculations.

- Screening records of fugitive VOC components at the 35R LOAP (S-2234-19) historically report no leaking components. Fugitive component HAE for S-2234-19 shall be calculated with measured VOC content (% of TOC) and CAPCOA screening factors.
- The gas compressor driven by engine S-2234-127 is identified in the permit and carries a permit limit of 0.7 lbs-VOC/day "potential to emit" VOC emissions based on CAPCOA "Screening Factors", 100% VOC content, and component counts. HAE shall be calculated with measured VOC content (26.44% of TOC) and CAPCOA screening factors.
- The gas compressors for engines S-2234-27 & '-28 were not assessed VOC emissions for permitting purposes, but are screened for Rule 4409 purposes and do not have a history of frequent leaking components. HAE shall also be calculated with CAPCOA screening factors and measured VOC content (26.44% of TOC).
- Fugitive component count VOC emissions are consistent and need not be averaged for the baseline period.

Emission Factors:

See Appendices D-K for historical source test data, historical fuel usage, measured and approved emissions factors, historical actual emissions, and fugitive component VOC emissions during the baseline period described below.

B. Baseline Period Determination and Data

Occidental of Elk Hills submitted the application to the District on August 13, 2013. Pursuant to District Rule 2201, Section 3.8, the baseline period for determining HAE shall be a period of time equal to either:

- 3.8.1 The two consecutive years of operation immediately prior to the submission date of the complete application; or
- 3.8.2 at least two consecutive years within the five years immediately prior to the submission date of the complete application if determined by the APCO as more representative of normal source operation; or
- 3.8.3 a shorter period of at least one year if the emissions unit has not been in operation for two years and this represents the full operational history of the emissions unit, including any replacement units; or
- 3.8.4 Zero years if an emissions unit has been in operation for less than one year (only for use when calculating AER).

1-1 1 - 1 1

For the purposes of this section, the submission of the complete application is considered to be August 13, 2013.

Records stored by OEHI show the average natural gas production rate from the Elk Hills Field for the period of 1977 through 2012 was approximately 120 billion cubic feet (Bcf) per year, with peak production in 1999 (see Appendix C for graphical representation of 1980 through 2012). Performing a running two year average during the same period shows the average gas production rate is 119 Bcf/yr.

During the five year period immediately preceding the shutdown of the 35R Gas Plant, the two-year period which most closely matches the historic two year average of 119 Bcf/yr is the period of 2010 through 2011. This period is selected as the baseline period for purposes of determining historical actual emissions.

The following table contains the summary of crude oil, produced water, and well head gas extracted from the Elk Hills Field for the two-year baseline period indicated.

Calendar	Crude oil (Bbl)	Produced Water (Bbl)	Gas (Mcf)
Years			
2010 - 2011	13,852,683	142,413,177	118,811,547

C. Historical Actual Emissions (HAE)

I.C. Engine S-2234-27 (K-9)

Historical Exhaust Emissions by Quarter 2010 (lb/qtr)						
	NOx	SOx	PM10	CO	VOC	
1st Quarter	6,605.69	8.06	409.43	12,426.46	6,391.88	
2nd Quarter	7,232.09	8.82	448.25	13,604.81	6,998.00	
3rd Quarter	8,573.44	10.46	531.39	16,128.13	8,295.93	
4th Quarter	8,481.46	10.35	525.72	15,955.86	8,207.32	

Historical Exhaust Emissions by Quarter 2011 (lb/qtr)						
	NO _x	SOx	PM10	CO	VOC	
1st Quarter	12,340.39	1.31	431.58	8,066.63	2,452.81	
2nd Quarter	14,164.78	1.51	495.38	9,259.20	2,815.43	
3rd Quarter	15,132.44	1.61	529.22	9,891.74	3,007.76	
4th Quarter	15,192.36	1.62	531.32	9,930.90	3,019.67	

Averaged Exhaust Emissions During Baseline Period (lb/qtr)						
	NOx	SOx	PM10	CO	VOC	
1st Quarter	9,473	5	421	10,247	4,422	
2nd Quarter	10,698	5	472	11,432	4,907	
3rd Quarter	11,853	6	530	13,010	5,652	
4th Quarter	11,837	6	529	12,943	5,614	

Fugitive Component VOC Emissions from Gas Compressor During Baseline Period (lb/qtr)					
	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter	
VOC	9	9	9	9	

I.C. Engine S-2234-28 (K-10)

Historical Exhaust Emissions by Quarter 2010 (lb/qtr)						
	NOx	SOx	PM10	CO	VOC	
1st Quarter	10,190.25	6.09	309.13	8,573.80	10,431.94	
2nd Quarter	10,132.82	6.05	307.39	8,525.49	10,373.14	
3rd Quarter	15,683.18	9.36	475.77	13,195.41	16,055.13	
4th Quarter	14,508.56	8.67	440.13	12,207.12	14,852.66	

Historical Exhaust Emissions by Quarter 2011 (lb/qtr)						
	NOx	SOx	PM10	CO	VOC	
1st Quarter	428.06	5.11	331.13	4,008.44	158.62	
2nd Quarter	88.49	1.06	68.45	828.64	32.79	
3rd Quarter	514.36	6.14	397.90	4,816.77	190.61	
4th Quarter	588.42	7.02	455.19	5,510.22	218.06	

Averaged Exhaust Emissions During Baseline Period (lb/qtr)						
	NOx	SOx	PM10	CO	VOC	
1st Quarter	5,309	6	320	6,291	5,295	
2nd Quarter	5,110	4	188	4,677	5,203	
3rd Quarter	8,099	8	437	9,006	8,123	
4th Quarter	7,548	8	448	8,859	7,535	

Fugitive Component VOC Emissions from Gas Compressor During Baseline Period (lb/qtr)					
	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter	
VOC	9	9	9	9	

I.C. Engine S-2234-127 (R-25)

Historical Exhaust Emissions by Quarter 2010 (lb/qtr)						
	NOx	SOx	PM10	CO	VOC	
1st Quarter	64.03	3.18	258.17	162.88	0	
2nd Quarter	84.14	4.18	339.29	214.06	0	
3rd Quarter	57.92	2.88	233.56	147.36	0	
4th Quarter	51.01	2.53	205.69	129.77	0	

Historical Exhaust Emissions by Quarter 2011 (lb/qtr)						
	NOx	SOx	PM10	CO	VOC	
1st Quarter	70.61	3.79	250.44	165.02	0	
2nd Quarter	81.34	4.36	288.49	190.09	0	
3rd Quarter	87.67	4.7	310.96	204.89	0	
4th Quarter	84.71	4.54	300.45	197.97	0	

Averaged Exhaust Emissions During Baseline Period (lb/qtr)						
	NOx	SOx	PM10	CO	VOC	
1st Quarter	67	3	254	164	0	
2nd Quarter	83	4	314	202	0	
3rd Quarter	73	4	272	176	0	
4th Quarter	68	4	253	164	0	

Fugitive Component VOC Emissions from Gas Compressor During Baseline Period (lb/qtr)					
	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter	
VOC	36	36	37	37	

35R LOAP Gas Plant S-2234-19

Fugitive Component VOC Emissions from LOAP Gas Plant S-2234-19 During Baseline Period (Ib/qtr)					
	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter	
VOC	1,989	2,011	2,033	2,033	

SUM OF AVERAGED HAE DURING BASELINE PERIOD

Sum of Exh	naust Emiss	ions + Fugi Perio	tive VOC Emi d (Ib/qtr)	ssions During	g Baseline
	NOx	SOx	PM10	CO	VOC
1st Quarter	14,849	14	995	16,702	11,760
2nd Quarter	12,425	13	974	16,311	12,175
3rd Quarter	20,025	18	1,239	22,192	15,863
4th Quarter	19,453	18	1,230	21,966	15,237

D. Adjustments to HAE

Pursuant to Section 3.22 of Rule 2201, Historical Actual Emissions must be discounted for any emissions reduction which is:

• Required or encumbered by any laws, rules, regulations, agreements, orders, or

- Attributed to a control measure noticed for workshop, or proposed or contained in a State Implementation Plan, or
- Proposed in the District Air Quality Plan for attaining the annual reductions required by the California Clean Air Act.
- Any Actual Emissions in excess of those required or encumbered by any laws, rules, regulations, orders, or permits. For units covered by a Specific Limiting Condition (SLC), the total overall HAE for all units covered by SLC must be discounted for any emissions in excess of that allowed by the SLC.

Adjustment for Rule 2201 – New and Modified Stationary Source Review Rule:

The 35R LOAP Gas Plant has been in operation prior to 1987 and has been subject to the District's NSR Rule when various modifications were performed. The 4,000 bhp lean-burn I.C. engines (S-2234-27 & -28) were also in existence prior to 1987 and have been subject to NSR since modifications to install a "pre-stratified charge" NO_X control method was installed. The 1,834 bhp compressor engine S-2234-127 was installed new in 2005 and was subject to District NSR at the time of initial permitting. All the equipment has a history of compliance with any and all of the NSR based permit conditions. Therefore, no adjustment to the calculated HAEs above is necessary for NSR purposes (Rule 2201)

Adjustment for Rule 4201 – Particulate Matter Concentration:

Section 3.1 prohibits discharge of dust, fumes, or total particulate matter into the atmosphere from any single source operation in excess of 0.1 grain per dry standard cubic foot.

Particulate matter emissions from the engine will be less than or equal to the rule limit of 0.1 grain per cubic foot of gas at dry standard conditions as shown by the following:

For the 4,000 bhp engines K-9 and K-10, the permitted PM_{10} emissions = 85.5 lb- PM_{10} /day:

 $(85.5 \text{ lb}-\text{PM}_{10}/\text{day})(1 \text{ day}/24 \text{ hr})(453.6 \text{ g/lb})(1/4,000 \text{ bhp}) = 0.404 \text{ g-PM}_{10}/\text{bhp-hr}$

$$\frac{.404g - PM_{10}}{bhp - hr} \times \frac{1g - PM}{0.96g - PM_{10}} \times \frac{1bhp - hr}{2,542.5Btu} \times \frac{10^6 Btu}{8,578 dscf} \times \frac{0.35 Btu_{out}}{1Btu_{in}} \times \frac{15.43 grain}{g} = 0.10 \quad \frac{grain - PM}{dscf}$$

Since 0.10 grain-PM/dscf is \leq to 0.1 grain per dscf, compliance with Rule 4201 is expected.

For the 1,834 bhp engine R-25, the permitted PM₁₀ emissions = 0.02 g/bhp-hr

$$\frac{.02g - PM_{10}}{bhp - hr} \times \frac{1g - PM}{0.96g - PM_{10}} \times \frac{1bhp - hr}{2,542.5 Btu} \times \frac{10^6 Btu}{8,578 dscf} \times \frac{0.35 Btu_{out}}{1 Btu_{in}} \times \frac{15.43 grain}{g} = 0.005 \quad \frac{grain - PM}{dscf}$$

Since 0.005 grain-PM/dscf is \leq to 0.1 grain per dscf, compliance with Rule 4201 is expected.

The permitted emission factors used to calculate the PM emission concentration from the I.C. engines meet the requirements for this rule and no adjustment is necessary.

Adjustment for Rule 4409 – Components at Light Crude Oil Production Facilities, Natural Gas Production Facilities, and Natural Gas Processing Facilities:

The purpose of this rule is to limit VOC emissions from leaking components at light crude oil production facilities, natural gas production facilities, and natural gas processing facilities.

The facility undertakes an ongoing inspection and maintenance program, and as a federal Title V facility, partakes in frequent fugitive VOC component screenings. Any leaks discovered, either from District inspection, or from self-inspection, are repaired promptly and in compliance with the rule requirements. Because fugitive components are inspected frequently, in some cases monthly, and any leaks discovered are promptly repaired, CAPCOA Oil and Gas "screening values" will be utilized to determine HAE for the fugitive components involved with this banking action. No further adjustment to calculated HAE is necessary for Rule 4409.

Adjustment for Rule 4702 – Internal Combustion Engines:

The purpose of this rule is to limit the emissions of nitrogen oxides (NOx), carbon monoxide (CO), volatile organic compounds (VOC), and sulfur oxides (SOx) from internal combustion engines.

Engines K-9 (S-2234-27) and K-10 (S-2234-28):

Both lean-burn engines K-9 and K-10 carry permit limits for NO_X, CO, and VOC of 136 ppmv (equivalent to 90% NO_X reduction), 453 ppmv, and 436 ppmv, respectively. All ppmv values are corrected to 15% O₂. Compliance has been demonstrated through source testing on an ongoing basis.

Table 2 in Section 5.2.2 lists the emission limits for lean-burn engines powering gas compressors as 65 ppmv @ 15% O_2 or 93% reduction, 2,000 ppmv CO, and 750 ppmv VOC, all corrected to 15% O_2 .

For the subject I.C. engies, if 136 ppmv NO_X @ 15% O₂ is approved as a 90% reduction for these engines, then 93% reduction from uncontrolled emissons would be an emissions concentration of NO_X not exceeding 95 ppmv corrected to 15% O₂.

The staggered compliance dates for Table 2 emission limits began on January 1, 2014. These engines were shut down and permits surrendered in March of 2013.

Being that the compliance date was pending on these engines, and the permitted NO_X level for S-2234-27 & '-28 is higher than Table 2's NO_X limit, no ERC will be granted above the lower NO_X limit in Rule 4702 of 95 ppmv @ 15% O_2 (93% reduction).

The emissions source testing results for these engines during the baseline period shows emissions well within the permitted limits and in compliance with both current and future requirements of District Rule 4702. Therefore, no adjustment to HAE is required for Rule 4702.

Engine R-25 (S-2234-127):

NSCR controlled engine R-25 carries District permitted emission limits which are based on Rule 2201 BACT requirements and are well within the current and future requirements of Rule 4702.

The emissions source testing results for this engine during the baseline period shows emissions well within the permitted limits and in compliance with both current and future requirements of District Rule 4702. Therefore, no adjustment to HAE is required for Rule 4702.

E. Actual Emissions Reductions (AERs):

	Qualifying AER During Baseline Period (lb/qtr)				
	NO _x	SOx	PM10	CO	VOC
1st Quarter	14,849	14	995	16,702	11,760
2nd Quarter	12,425	13	974	16,311	12,175
3rd Quarter	20,025	18	1,239	22,192	15,863
4th Quarter	19,453	18	1,230	21,966	15,237

The total qualifying AERs are shown in the table below:

F. Air Quality Improvement Deduction

The Air Quality Improvement Deduction (AQID) is 10% of the AER per Rule 2201, Sections 3.5 and 4.12.1, and is summarized as follows:

Air Quality Improvement Deduction (AQID) lb/qtr (AQID = AER x 10%)						
	NOx	SOx	PM10	CO	VOC	
1st Quarter	1,485	1	100	1,670	1,176	
2nd Quarter	1,243	· 1	97	1,631	1,218	
3rd Quarter	2,003	2	124	2,219	1,586	
4th Quarter	1,945	2	123	2,197	1,524	

G. Increases in Permitted Emissions (IPE)

No IPE is associated with this project.

H. Bankable Emissions Reductions Credits

The bankable emissions reductions credits, presented in following table, are determined by subtraction of the Air Quality Improvement Deduction (discussed in Section V.F) from the AER.

Bankable Emissions Reductions Credits						
	NOx	SOx	PM10	CO	VOC	
1st Quarter	13,364	13	895	15,032	10,584	
2nd Quarter	11,182	12	877	14,680	10,957	
3rd Quarter	18,022	16	1,115	19,973	14,277	
4th Quarter	17,508	16	1,107	19,769	13,713	

VI. Compliance:

Rule 2201 - New and Modified Stationary Source Review Rule:

To comply with the definition of Actual Emissions Reductions (Rule 2201, Section 3.2.1), the reductions must be real, enforceable, quantifiable, permanent, and surplus.

A. Real

The emissions reductions were generated by the shutdown of the OEHI 35R LOAP Gas Plant and three I.C. engine powered gas compressors. The emissions reductions were calculated from actual historic data and recognized emission factors or source test data. The associated permits for these units have been surrendered to the District. Therefore, the emission reductions are real.

B. Enforceable

The PTO's for OEHI's 35R Gas Plant operations and the three associated I.C. engine compressors have been surrendered to the District. Operation of any of the equipment without a valid permit would subject the Permittee to enforcement actions. Therefore, the reductions are enforceable.

C. Quantifiable

The reductions are quantifiable since they were calculated from historic production and fuel use data, source testing data, established and accepted emission factors, permitted limits, and methods according to District Rule 2201. Therefore, the reductions are quantifiable.

D. Permanent

The gas plant and I.C. engines have been shut down and the PTOs have been surrendered to the District. Gas formerly processed through the 35R LOAP Gas Plant is routed to a new gas plant (see District project S1103628) for which all emissions increases for the project were fully offset. Therefore, the reductions are permanent.

E. Surplus

To be considered surplus, Actual Emission Reductions shall be in excess, at the time the application for an Emission Reduction Credit or an Authority to Construct authorizing such reductions is deemed complete, of any emissions reduction which:

- Is required or encumbered by any laws, rules, regulations, agreements, orders, or
- Is attributed to a control measure noticed for workshop, or proposed or contained in a State Implementation Plan, or
- Is proposed in the APCO's adopted air quality plan pursuant to the California Clean Air Act.

At the time of the shutdown and subsequent permit surrender, all the units involved were in compliance with current and any known future requirements of all applicable rules and regulations. Therefore, the reductions are surplus.

F. Not used for the Approval of an Authority to Construct or as Offsets

The emission reduction credits generated by the shutdown of the 35R LOAP Gas Plant and associated I.C. engine powered gas compressors were not used for the approval of any Authority to Construct or used as mitigating offsets for approval of other equipment.

Rule 2301 – Emission Reduction Banking:

Section 5.5 states that ERC certificate applications shall be submitted within 180 days after the emission reduction occurs. The applicant surrendered the PTOs and had permanently ceased operation of the equipment at this location on March 14, 2013. The ERC application was received on August 13, 2013, within the 180 day timeframe allowed. Therefore, the application was submitted in a timely fashion.

Section 6.1.2 states that if the emission reductions were created as a result of the shutdown of a permitted emissions unit, the relevant Permit(s) to Operate have been surrendered and voided. The Permits to Operate were surrendered and canceled by the District on March 14, 2013.

VII. <u>Recommendation:</u>

Issue Emission Reduction Credit (ERC) Certificates S-4211-1, '-2, '-3, '-4, and '-5 in the amounts shown below and on the draft ERC certificate contained in Appendix A.

Bankable Emissions Reductions Credits						
	NOx	SOx	PM10	CO	VOC	
1st Quarter	13,364	13	895	15,032	10,584	
2nd Quarter	11,182	12	877	14,680	10,957	
3rd Quarter	18,022	16	1,115	19,973	14,277	
4th Quarter	17,508	16	1,107	19,769	13,713	

List of Appendices

- A. Draft ERC Certificates
- B. Surrendered Permits to Operate
- C. Elk Hills Field Historical Natural Gas Production
- D. 35R Gas Plant (S-2234-19) Gas Quality Analysis
- E. 35R Gas Plant (S-2234-19) Fugitive VOC Component Emissions during Baseline Period
- F. Engine K-9 (S-2234-27) Summary of Source Test Results and Fuel Analysis during Baseline Period
- G. Engine K-9 (S-2234-27) Summary of Historical Actual Emissions and Gas Compressor Fugitive VOC Emissions during Baseline Period
- H. Engine K-10 (S-2234-28) Summary of Source Test Results and Fuel Analysis during Baseline Period
- I. Engine K-10 (S-2234-28) Summary of Historical Actual Emissions and Gas Compressor Fugitive VOC Emissions during Baseline Period
- J. Engine R-25 (S-2234-127) Summary of Source Test Results and Fuel Analysis during Baseline Period
- K. Engine R-25 (S-2234-127) Summary of Historical Actual Emissions and Gas Compressor Fugitive VOC Emissions during Baseline Period

Occidental of Elk Hills, Inc. Facility Number: S-2234 ERC Project Number: S-1133368

Appendix A

Draft ERC Certificates

Southern Regional Office • 34946 Flyover Court • Bakersfield, CA 93308

Emission Reduction Credit Certificate

ISSUED TO: OCCIDENTAL OF ELK HILLS INC

ISSUED DATE: <DRAFT>

LOCATION OF GAS PLANT REDUCTION: SECTION SE-35, T-30S, R-23E TUPMAN, CA

SECTION: 35 TOWNSHIP: 30S RANGE: 23E

For VOC Reduction In The Amount Of:

Quarter 1	Quarter 2	Quarter 3	Quarter 4
10,584 lbs	10,957 lbs	14,277 lbs	13,713 lbs

[] Conditions Attached

Method Of Reduction

[] Shutdown of Entire Stationary Source

[X] Shutdown of Emissions Units

[] Other

Shutdown of 35R Lean Oil Absorption Plant (S-2234-19) and three IC engines powering gas compressors (S-2234-27, '-28, '-127)

Use of these credits outside the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) is not allowed without express written authorization by the SJVUAPCD.

Seyed Sadredin, Executive Director ГАРСО

David Warner, Director of Permit Services

Southern Regional Office • 34946 Flyover Court • Bakersfield, CA 93308

Emission Reduction Credit Certificate

ISSUED TO: OCCIDENTAL OF ELK HILLS INC

ISSUED DATE: <DRAFT>

LOCATION OF GAS PLANT REDUCTION: SECTION SE-35, T-30S, R-23E TUPMAN, CA

SECTION: 35 TOWNSHIP: 30S RANGE: 23E

For NOx Reduction In The Amount Of:

Quarter 1	Quarter 2	Quarter 3	Quarter 4
13,364 lbs	11,182 lbs	18,022 lbs	17,508 lbs

[] Conditions Attached

Method Of Reduction

- [] Shutdown of Entire Stationary Source
- [X] Shutdown of Emissions Units
- [] Other

Shutdown of 35R Lean Oil Absorption Plant (S-2234-19) and three IC engines powering gas compressors (S-2234-27, '-28, '-127)

Use of these credits outside the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) is not allowed without express written authorization by the SJVUAPCD.

Seyed Sadredin, Executive Director APCO

David Warner, Director of Permit Services

Feb 14 2014 8:42AM - LEONARDS

Southern Regional Office • 34946 Flyover Court • Bakersfield, CA 93308

Emission Reduction Credit Certificate

ISSUED TO: OCCIDENTAL OF ELK HILLS INC

ISSUED DATE: <DRAFT>

LOCATION OF GAS PLANT REDUCTION: SECTION SE-35, T-30S, R-23E TUPMAN, CA

SECTION: 35 TOWNSHIP: 30S RANGE: 23E

For CO Reduction In The Amount Of:

Quarter 1	Quarter 2	Quarter 3	Quarter 4
15,032 lbs	14,680 lbs	19,973 lbs	19,769 lbs

[] Conditions Attached

Method Of Reduction

- [] Shutdown of Entire Stationary Source
- [X] Shutdown of Emissions Units

[] Other

Shutdown of 35R Lean Oil Absorption Plant (S-2234-19) and three IC engines powering gas compressors (S-2234-27, '-28, '-127)

Use of these credits outside the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) is not allowed without express written authorization by the SJVUAPCD.

Seyed Sadredin, Executive Director ГАРСО

David Warner, Director of Permit Services

Southern Regional Office • 34946 Flyover Court • Bakersfield, CA 93308

Emission Reduction Credit Certificate

ISSUED TO: OCCIDENTAL OF ELK HILLS INC

ISSUED DATE: <DRAFT>

LOCATION OF GAS PLANT REDUCTION: SECTION SE-35, T-30S, R-23E TUPMAN, CA

SECTION: 35 TOWNSHIP: 30S RANGE: 23E

For PM10 Reduction In The Amount Of:

Quarter 1	Quarter 2	Quarter 3	Quarter 4
895 lbs	877 lbs	1,115 lbs	1,107 lbs

[] Conditions Attached

Method Of Reduction

- [] Shutdown of Entire Stationary Source
- [X] Shutdown of Emissions Units
- [] Other

Shutdown of 35R Lean Oil Absorption Plant (S-2234-19) and three IC engines powering gas compressors (S-2234-27, '-28, '-127)

Use of these credits outside the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) is not allowed without express written authorization by the SJVUAPCD.

КАРСО Seyed Sadredin, Executive Director

David Warner, Director of Permit Services

Southern Regional Office • 34946 Flyover Court • Bakersfield, CA 93308

Emission Reduction Credit Certificate

ISSUED TO: OCCIDENTAL OF ELK HILLS INC

ISSUED DATE: <DRAFT>

LOCATION OF GAS PLANT REDUCTION: SECTION SE-35, T-30S, R-23E TUPMAN, CA

SECTION: 35 TOWNSHIP: 30S RANGE: 23E

For SOx Reduction In The Amount Of:

Quarter 1	Quarter 2	Quarter 3	Quarter 4
13 lbs	12 lbs	16 lbs	16 lbs

[] Conditions Attached

Method Of Reduction

- [] Shutdown of Entire Stationary Source
- [X] Shutdown of Emissions Units
- [] Other

Shutdown of 35R Lean Oil Absorption Plant (S-2234-19) and three IC engines powering gas compressors (S-2234-27, '-28, '-127)

Use of these credits outside the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) is not allowed without express written authorization by the SJVUAPCD.

Seyed Sadredin, Executive Director **MAPCO**

David Warner, Director of Permit Services

Feb 14 2014 8:42AM - LEONARDS

Occidental of Elk Hills, Inc. Facility Number: S-2234 ERC Project Number: S-1133368

Appendix B

Surrendered Permits to Operate

PERMIT UNIT: S-2234-19-13

EXPIRATION DATE: 10/31/2016

SECTION: 35 TOWNSHIP: 30S RANGE: 23E

EQUIPMENT DESCRIPTION:

35R GAS PLANT WITH LEAN OIL RECLAIMING STILL, FOUR AIR COMPRESSORS, ABSORBER, RICH OIL RECTIFIER, STRIPPER, DE-ETHANIZER AND DE-PROPANIZER

PERMIT UNIT REQUIREMENTS

- 1. Operation shall include 3 absorption columns, rich absorption oil rectifier, absorption oil stripper, de-ethanizer, depropanizer, de-butanizer, de-isobutanizer, 36 associated vessels, 32 heat exchangers, 31 process pumps, gas compressor K-8, and associated piping. [District Rule 2201] Federally Enforceable Through Title V Permit
- 2. All process vessels and lines handling volatile organic compounds shall vent only to other process vessels, Districtapproved flare, or substrata injection system. [District Rule 2201] Federally Enforceable Through Title V Permit
- 3. This operation shall comply with the requirements of District Rule 4409, as specified on facility wide permit S-2234-0. [District Rule 4409] Federally Enforceable Through Title V Permit
- 4. Heat exchangers utilizing cooling water shall be properly maintained to prevent VOC contamination of cooling water and resultant emissions from cooling towers. [District Rule 2201] Federally Enforceable Through Title V Permit
- 5. The operator shall test the circulating water from the cooling tower at least every six months to determine the concentration of hexavalent chromium. The District shall be notified 48 hours in advance of any sampling of cooling water for testing. Required testing may be discontinued and an exemption sought when two consecutive required tests show hexavalent chromium concentrations less than 0.15 mg/l. [District Rule 7012]
- 6. Operator shall comply with other applicable requirements of District Rule 7012 (amended 12/17/92). [District Rule 7012]
- 7. All required source testing shall conform to the compliance testing procedures described in District Rule 1081 (Amended December 16, 1993). [District Rule 1081] Federally Enforceable Through Title V Permit
- 8. The operator shall maintain all records of required monitoring data and support information for inspection at any time for a period of five years. [District Rule 2520, 9.5.2] Federally Enforceable Through Title V Permit
- 9. VOC emissions from absorption column C-1C, its associated piping, and components shall consist only of fugitive emissions and shall not exceed 0.8 lb/day. [District Rule 2201] Federally Enforceable Through Title V Permit
- 10. VOC emissions from gas compressor K-8, its associated piping, and components shall consist only of fugitive emissions and shall not exceed 6.6 lb/day. [District Rule 2201] Federally Enforceable Through Title V Permit
- 11. Permittee shall maintain with the permit accurate fugitive component counts and resulting emissions calculated using API Publication 450-3-83-007, Table E-3, for compressor K-8, its associated piping, and components, and for absorption column C-1C, its associated piping and components. [District Rule 2201] Federally Enforceable Through Title V Permit
- 12. Permittee shall maintain a written record of VOC content (sampled not less than annually) of the gas processed through absorption column C-1C, its associated piping and components. Such records available for District inspection upon request for a period of five years. [District Rule 2201] Federally Enforceable Through Title V Permit

Permit Unit Requirements for S-2234-19-13 (continued)

- For absorption column C-1C, its associated piping, and components leak shall be defined as a reading as methane in excess of 10,000 ppm above background when measured at a distance of one (1) centimeter from the potential source.
 [40 CFR 60.482(b), 60.633(b)(2)] Federally Enforceable Through Title V Permit
- 14. Flanges and threaded connections associated with absorption column C-1C shall be inspected at least annually to detect any leaks and shall be monitored within 5 days by the method 21 if evidence of a potential leak is found by visual, audible, olfactory, or any other detection method. [40 CFR 60.482-8(a)] Federally Enforceable Through Title V Permit
- 15. Valves associated with absorption column C-1C shall be initially monitored monthly for leak detection and if a no leak is detected for 2 successive months valves may be monitored the first month of every quarter, beginning with the next quarter, until a leak is detected. If a leak is detected, the valves shall be monitored monthly until no leak is detected for 2 successive months. After 5 consecutive quarterly leak detection periods with the percent of valves leaking equal to or less than 2.0, the inspection frequency may be changed from quarterly to annually. If the percent of valves found leaking during any annual or other inspection, is greater than 2.0, the owner or operator shall comply with the requirements as described in ¹ 60.482-7 but can again elect to use annual monitoring. The percent of valves leaking shall be determined by dividing the sum of valves found leaking during current monitoring and valves for which repair has been delayed by the total number of valves subject to the requirements. [40 CFR 60.483-2(b)(1) & 40 CFR 60.483-1(b)(3)(4)(5)] Federally Enforceable Through Title V Permit
- 16. An owner or operator must keep a record of the percent of valves found leaking during each leak detection period. [40 CFR 60.483(b)(6)] Federally Enforceable Through Title V Permit
- 17. Each pressure relief device associated with absorption column C-1C shall be monitored at least quarterly for leak detection and shall be inspected within one (1) working day after venting to atmosphere. [40 CFR 60.633(b)(1)] Federally Enforceable Through Title V Permit
- 18. For absorption column C-1C, its associated piping, and components, a leaking component shall be identified by affixing a weatherproof and readily visible tag, marked with the equipment identification number and date on which leak is detected. The leak shall be repaired as soon as practicable, but no later than 15 calendar days after the leak is detected. The first attempt at repair shall be made no later than 5 calendar days after each leak is detected. First attempts at repair include, but are not limited to, the following best practices where practicable: (1) Tightening of bonnet bolts; (2) Replacement of bonnet bolts; (3) Tightening of packing gland nuts; (4) Injection of lubricant into lubricated packing. [40 CFR 60.482-7(d)(2), (e), 40 CFR 60.486(b)(1), 40 CFR 60.635(b)(1)] Federally Enforceable Through Title V Permit
- 19. For absorption column C-1C, delay of repair for valves will be allowed until the next process unit turnaround, but in no case later than one year from the date of the original leak detection, if: (1) The owner or operator demonstrates that emissions of purged material resulting from immediate repair are greater than the fugitive emissions likely to result from delay of repair, and (2) When repair procedures are effected, the purged material is collected and destroyed or recovered in a control device complying with ¹ 60.482-10. [40 CFR 60.482-9(c)] Federally Enforceable Through Title V Permit
- 20. For absorption column C-1C, the identification on a valve may be removed after it has been monitored for 2 successive months as specified in ¹ 60.482-7(c) and no leaks has been detected during those 2 months. [40 CFR 60.486(b)(3)] Federally Enforceable Through Title V Permit

Permit Unit Requirements for S-2234-19-13 (continued)

- 21. For absorption column C-1C, the following information shall be recorded in a log and shall be kept for 5 years in a readily accessible location: (1) A schedule of monitoring. (2) The percent of valves found leaking during each monitoring period. (3) The instrument and operator identification numbers and the equipment identification number. (4) The date the leak was detected and the dates of each attempt to repair the leak. (5) Repair methods applied in each attempt to repair the leak. (6) "Above 10,000" if the maximum instrument reading measured by the methods specified in [⊥] 60.485(a) after each repair attempt is equal to or greater than 10,000 ppm. (7) "Repair delayed" and the reason for the delay if a leak is not repaired within 15 calendar days after discovery of the leak. (8) The signature of the owner or operator (or designate) whose decision it was that repair could not be effected without a process shutdown. (9) The expected date of successful repair of the leak if a leak is not repaired. (11) The date of successful repair of the leak. [40 CFR 60.486(c), (g)] Federally Enforceable Through Title V Permit
- 22. For absorption column C-1C, semi-annual reporting must include following for the reporting period. (1) Process unit identification. (2) Number of pressure relief devices for which leaks were detected as required in [⊥] 60.633(b)(2) and (3) Number of pressure relief devices for which leaks were not repaired as required in [⊥] 60.633(b)(3). (4) Number of valves for which leaks were detected as described in [⊥] 60.482(7)(b) or [⊥] 60.483-2, (5) Number of valves for which leaks were not repaired as required in [⊥] 60.482-7(d)(1). (6) The facts that explain each delay of repair and, where appropriate, why a process unit shutdown was technically infeasible. (7) Dates of process unit shutdowns which occurred within the semiannual reporting period. [40 CFR 60.636(c) & 60.487(c)] Federally Enforceable Through Title V Permit
- 23. EPA Method 21 shall be used to determine the presence of leaking sources. The instrument shall be calibrated before use each day of its use by the procedures specified in Method 21. The following calibration gases shall be used: (i) Zero air (less than 10 ppm of hydrocarbon in air); and (ii) A mixture of methane or n-hexane and air at a concentration of about, but less than, 10,000 ppm methane or n-hexane. [40 CFR 60.485(b)] Federally Enforceable Through Title V Permit
- 24. The requirements of 40 CFR 60 Subpart LLL do not apply to this source. A permit shield is granted from these requirements. [District Rule 2520, 13.2] Federally Enforceable Through Title V Permit

PERMIT UNIT: S-2234-27-7

EXPIRATION DATE: 10/31/2016

EQUIPMENT DESCRIPTION:

4,000 BHP DELAVAL MODEL HVA12 LEAN-BURN NATURAL GAS-FIRED IC ENGINE WITH PRE-COMBUSTION CHAMBER POWERING A GAS COMPRESSOR (K-9 UNX #11726)

PERMIT-UNIT REQUIREMENTS

- 1. Approved locations for this equipment: any site within facility S-2234. [District Rule 2201] Federally Enforceable Through Title V Permit
- 2. By October 19, 2012, the owner/operator shall submit an Authority to Construct (ATC) permit application to the District to comply with 40 CFR 63, ZZZZ. [District Rule 2010] Federally Enforceable Through Title V Permit
- 3. By July 1, 2012, the operator shall submit to the APCO an APCO-approvable emission control plan of all actions to be taken to satisfy the emission requirements of Section 5.2 of District Rule 4702. If there is no change to the previously-approved emission control plan, the operator shall submit a letter to the District indicating that the previously approved plan is still valid. [District Rule 4702, 6.1 and 7.5] Federally Enforceable Through Title V Permit
- 4. The operator shall notify the District in writing at least two weeks prior to starting operations at a new location. [District Rule 1070] Federally Enforceable Through Title V Permit
- 5. This engine shall be equipped with an operational non-resettable elapsed time meter or other APCO approved alternative. [District Rule 4702] Federally Enforceable Through Title V Permit
- 6. Emissions rates shall not exceed any of the following limits: NOx (as NO2): 14.55 lb/hr, 1.65 gr/hp-hr and 136 ppmv
 @ 15% O2 (equivalent to 90% NOx reduction), SOx (as SO2): 10 lb/day, PM10: 85.5 lb/day, CO: 453 ppmv @ 15% O2, or VOC: 436 ppmv @ 15% O2. [District Rules 2201, 4201, and 4702; Kern County Rule 407] Federally Enforceable Through Title V Permit
- 7. Percent emission reductions, if used to comply with NOx emission limits, shall be calculated as follows: For engines with external control devices that are not operated in combination with a second emission control device or technique, percent reduction shall be calculated using emission samples taken at the inlet and outlet of the control device. For engines without external control devices and for engines with an external control device in combination with a second emission control device or technique, percent reduction shall be based on source test results for the uncontrolled engine and the engine after the control device or technique has been employed. The engine's typical operating parameters, loading, and duty cycle shall be documented and repeated at each successive post-control source test to ensure the engine is meeting the percent reduction limit. When representative source sampling prior to the application of an emissions control technology or technique is not available, the APCO may approve the use of a manufacturer's uncontrolled emissions information or source sampling from a similar, uncontrolled engine. [District Rule 4702, 5.4] Federally Enforceable Through Title V Permit
- 8. The operator of an internal combustion engine that uses percent emission reduction to comply with the NOx emission limits shall provide an accessible inlet and outlet on the external control device or the engine as appropriate for taking emission samples and as approved by the APCO. [District Rule 4705, 5.5] Federally Enforceable Through Title V Permit
- 9. Sulfur compound emissions shall not exceed 0.2% by volume, 2000 ppmv, on a dry basis averaged over 15 consecutive minutes. [Kern County Rule 407] Federally Enforceable Through Title V Permit

Permit Unit Requirements for S-2234-27-7 (continued)

- 10. Particulate matter emissions shall not exceed 0.1 grains/dscf in concentration. [District Rule 4201 and Kern County Rule 404] Federally Enforceable Through Title V Permit
- 11. Unit shall be fired only on PUC quality natural gas with a sulfur content of less than or equal to 0.017% by weight. [Kern County Rule 407] Federally Enforceable Through Title V Permit
- 12. If the IC engine is fired on PUC-regulated natural gas, then maintain on file copies of all natural gas bills. [District Rule 2520, 9.4.2] Federally Enforceable Through Title V Permit
- 13. If the engine is not fired on PUC-regulated natural gas, then the sulfur content (as hydrogen sulfide) of the natural gas being fired in the IC engine shall be calculated using a continuous monitor averaged over a daily basis in accordance with SCAQMD Rule 431.1 Attachment A (as amended June 12, 1998). [District Rule 2520, 9.4.2] Federally Enforceable Through Title V Permit
- 14. If the engine is not fired on PUC-regulated natural gas, the sulfur content (as hydrogen sulfide) of each fuel source shall be tested. [District Rule 2520, 9.4.2] Federally Enforceable Through Title V Permit
- 15. For emissions source testing, the arithmetic average of three 30-consecutive-minute test runs shall apply. This average shall be multiplied by the appropriate factor to determine compliance with the hourly emission limits. If two of three runs are above an applicable limit, the test cannot be used to demonstrate compliance with an applicable limit. VOC emissions shall be reported as methane. VOC, NOx, and CO concentrations shall be reported in ppmv, corrected to 15% oxygen. For engines that comply with a percent reduction limit, the percent reduction of NOx emissions shall also be reported. [District Rules 2520, 9.4.2 and 4702, 6.3.3] Federally Enforceable Through Title V Permit
- 16. The following test methods shall be used: NOx (ppmv) EPA Method 7E or ARB Method 100, CO (ppmv) EPA Method 10 or ARB Method 100, stack gas oxygen EPA Method 3 or 3A or ARB Method 100, and VOC (ppmv) EPA Method 25A or 25B, or ARB Method 100. Methane and ethane, which are exempt compounds, shall be excluded from the result of the VOC test. EPA approved alternative test methods may also be used to satisfy the source testing requirements of this permit with prior written approval from the APCO. [District Rules 1081 and 4702] Federally Enforceable Through Title V Permit
- 17. Source testing shall be conducted using the methods and procedures approved by the District. The District must be notified at least 30 days prior to any compliance source test, and a source test plan must be submitted for approval at least 15 days prior to testing. [District Rule 1081] Federally Enforceable Through Title V Permit
- Emissions source testing shall be conducted with the engine operating either at conditions representative of normal operations or conditions specified in the Permit to Operate. [District Rule 4702] Federally Enforceable Through Title V Permit
- 19. The results of each source test shall be submitted to the District within 60 days thereafter. [District Rule 1081] Federally Enforceable Through Title V Permit
- 20. This engine shall be operated and maintained in proper operating condition per the manufacturer's requirements as specified on the Inspection and Monitoring (I&M) plan submitted to the District. [District Rules 4702 and 2520, 9.4.2] Federally Enforceable Through Title V Permit
- 21. The permittee shall update the I&M plan for this engine prior to any planned change in operation. The permittee must notify the District no later than seven days after changing the I&M plan and must submit an updated I&M plan to the APCO for approval no later than 14 days after the change. The date and time of the change to the I&M plan shall be recorded in the engine's operating log. For modifications, the revised I&M plan shall be submitted to and approved by the APCO prior to issuance of the Permit to Operate. The permittee may request a change to the I&M plan at any time. [District Rules 4702 and 2520, 9.4.2] Federally Enforceable Through Title V Permit
- 22. NOx, CO, and VOC emissions shall be measured (source tested) not less than every 12 months. If compliance with the emission limits is demonstrated for 2 consecutive years, testing frequency may be reduced to every 24 months. If the unit fails to demonstrate compliance with the emission limits, the testing frequency shall return to not less than every 12 months. NOx percent reduction compliance shall be demonstrated every 24 months. [District Rules 2201, 2520 9.4.2, and 4702, 6.3.2] Federally Enforceable Through Title V Permit

Permit Unit Requirements for S-2234-27-7 (continued)

- 23. Permittee shall monitor the nitrogen oxides (NOx) concentration in the engine exhaust with a facility conducted noncertified self test at least on a monthly basis. [District Rule 2520, 9.4.2] Federally Enforceable Through Title V Permit
- 24. The permittee shall monitor and record the stack concentration of NOx, CO, and O2, using a portable emission monitor that meets District specifications, at least once every calendar quarter (in which a source test is not performed and the engine is operated) or, if the engine is operated less than 120 calendar days in a calendar year, at least once during that calendar year (in which a source test is not performed and the engine is operated). Monitoring shall not be required if the engine is not in operation, i.e. the engine need not be started solely to perform monitoring. Monitoring shall be performed within 5 days of restarting the engine unless monitoring has been performed within the last calendar quarter. Records must be maintained of the dates of non-operation to validate extended monitoring frequencies. [District Rule 4702] Federally Enforceable Through Title V Permit
- 25. If either the NOx or CO concentrations corrected to 15% O2, as measured by the portable analyzer, exceed the allowable emission concentration, the permittee shall return the emissions to within the acceptable range as soon as possible, but no longer than 8 hours after detection. If the portable analyzer readings continue to exceed the allowable emissions concentration after 8 hours, the permittee shall notify the District within the following 1 hour, and conduct a certified source test within 60 days of the first exceedance. In lieu of conducting a source test, the permittee may stipulate a violation has occurred, subject to enforcement action. The permittee must then correct the violation, show compliance has been re-established, and resume monitoring procedures. If the deviations are the result of a qualifying breakdown condition pursuant to Rule 1100, the permittee may fully comply with Rule 1100 in lieu of performing the notification and testing required by this condition. [District Rule 4702] Federally Enforceable Through Title V Permit
- 26. All alternate monitoring parameter emission readings shall be taken with the unit operating either at conditions representative of normal operations or conditions specified in the permit-to-operate. The analyzer shall be calibrated, maintained, and operated in accordance with the manufacturer's specifications and recommendations or a protocol approved by the APCO. Emission readings taken shall be averaged over a 15 consecutive-minute period by either taking a cumulative 15 consecutive-minute sample reading or by taking at least five (5) readings, evenly spaced out over the 15 consecutive-minute period. [District Rule 4702] Federally Enforceable Through Title V Permit
- 27. The permittee shall maintain records of: (1) the date and time of NOx, CO, and O2 measurements, (2) the O2 concentration in percent and the measured NOx and CO concentrations corrected to 15% O2, (3) make and model of exhaust gas analyzer, (4) exhaust gas analyzer calibration records, and (5) a description of any corrective action taken to maintain the emissions within the acceptable range. [District Rule 4702] Federally Enforceable Through Title V Permit
- 28. The facility conducted noncertified self test shall be performed for NOx according to ARB Method 100 (or EPA Method 7E). [District Rules 2201 and 2520, 9.4.2] Federally Enforceable Through Title V Permit
- 29. The permittee shall maintain an engine operating log to demonstrate compliance. The engine operating log shall include, on a monthly basis, the following information: total hours of operation, type of fuel used, maintenance or modifications performed, monitoring data, compliance source test results, and any other information necessary to demonstrate compliance. [District Rule 4702, 6.2.1] Federally Enforceable Through Title V Permit
- 30. Compliance with permit conditions in the Title V permit shall be deemed compliance with the following applicable requirements of SJVUAPCD Rule 4201; Kern County Rule 407. A permit shield is granted from these requirements. [District Rule 2520, 13.2] Federally Enforceable Through Title V Permit
- 31. Compliance with permit conditions in the Title V permit shall be deemed compliance with the following subsumed requirements: Kern County Rule 404. A permit shield is granted from these requirements. [District Rule 2520, 13.2] Federally Enforceable Through Title V Permit

PERMIT UNIT: S-2234-28-8

EXPIRATION DATE: 10/31/2016

EQUIPMENT DESCRIPTION: 4,000 BHP DELAVAL MODEL HVA12 LEAN-BURN NATURAL GAS-FIRED IC ENGINE WITH PRE-COMBUSTION CHAMBER POWERING A GAS COMPRESSOR (K-10 UNX #11718)

PERMIT UNIT REQUIREMENTS

- 1. Approved locations for this equipment: any site within facility S-2234. [District Rule 2201] Federally Enforceable Through Title V Permit
- 2. By October 19, 2012, the owner/operator shall submit an Authority to Construct (ATC) permit application to the District to comply with 40 CFR 63, ZZZZ. [District Rule 2010] Federally Enforceable Through Title V Permit
- 3. By July 1, 2012, the operator shall submit to the APCO an APCO-approvable emission control plan of all actions to be taken to satisfy the emission requirements of Section 5.2 of District Rule 4702. If there is no change to the previously-approved emission control plan, the operator shall submit a letter to the District indicating that the previously approved plan is still valid. [District Rule 4702, 6.1 and 7.5] Federally Enforceable Through Title V Permit
- 4. The operator shall notify the District in writing at least two weeks prior to starting operations at a new location. [District Rule 1070] Federally Enforceable Through Title V Permit
- 5. This engine shall be equipped with an operational non-resettable elapsed time meter or other APCO approved alternative. [District Rule 4702] Federally Enforceable Through Title V Permit
- Emissions rates shall not exceed any of the following limits: NOx (as NO2): 14.55 lb/hr, 1.65 gr/hp-hr and 136 ppmv @ 15% O2 (equivalent to 90% NOx reduction), SOx (as SO2): 10 lb/day, PM10: 85.5 lb/day, CO: 453 ppmv @ 15% O2, or VOC: 436 ppmv @ 15% O2. [District Rules 2201, 4201, and 4702; Kern County Rule 407] Federally Enforceable Through Title V Permit
- 7. Percent emission reductions, if used to comply with NOx emission limits, shall be calculated as follows: For engines with external control devices that are not operated in combination with a second emission control device or technique, percent reduction shall be calculated using emission samples taken at the inlet and outlet of the control device. For engines without external control devices and for engines with an external control device in combination with a second emission control device or technique, percent reduction shall be based on source test results for the uncontrolled engine and the engine after the control device or technique has been employed. The engine's typical operating parameters, loading, and duty cycle shall be documented and repeated at each successive post-control source test to ensure the engine is meeting the percent reduction limit. When representative source sampling prior to the application of an emissions control technology or technique is not available, the APCO may approve the use of a manufacturer's uncontrolled emissions information or source sampling from a similar, uncontrolled engine. [District Rule 4702, 5.4] Federally Enforceable Through Title V Permit
- 8. The operator of an internal combustion engine that uses percent emission reduction to comply with the NOx emission limits shall provide an accessible inlet and outlet on the external control device or the engine as appropriate for taking emission samples and as approved by the APCO. [District Rule 4702, 5.5] Federally Enforceable Through Title V Permit
- 9. Sulfur compound emissions shall not exceed 0.2% by volume, 2000 ppmv, on a dry basis averaged over 15 consecutive minutes. [Kern County Rule 407] Federally Enforceable Through Title V Permit

Permit Unit Requirements for S-2234-28-8 (continued)

- 10. Particulate matter emissions shall not exceed 0.1 grains/dscf in concentration. [District Rule 4201 and Kern County Rule 404] Federally Enforceable Through Title V Permit
- 11. Unit shall be fired only on PUC quality natural gas with a sulfur content of less than or equal to 0.017% by weight. [Kern County Rule 407] Federally Enforceable Through Title V Permit
- 12. If the IC engine is fired on PUC-regulated natural gas, then maintain on file copies of all natural gas bills. [District Rule 2520, 9.4.2] Federally Enforceable Through Title V Permit
- 13. If the engine is not fired on PUC-regulated natural gas, then the sulfur content (as hydrogen sulfide) of the natural gas being fired in the IC engine shall be calculated using a continuous monitor averaged over a daily basis in accordance with SCAQMD Rule 431.1 Attachment A (as amended June 12, 1998). [District Rule 2520, 9.4.2] Federally Enforceable Through Title V Permit
- 14. If the engine is not fired on PUC-regulated natural gas, the sulfur content (as hydrogen sulfide) of each fuel source shall be tested. [District Rule 2520, 9.4.2] Federally Enforceable Through Title V Permit
- 15. For emissions source testing, the arithmetic average of three 30-consecutive-minute test runs shall apply. This average shall be multiplied by the appropriate factor to determine compliance with the hourly emission limits. If two of three runs are above an applicable limit, the test cannot be used to demonstrate compliance with an applicable limit. VOC emissions shall be reported as methane. VOC, NOx, and CO concentrations shall be reported in ppmv, corrected to 15% oxygen. For engines that comply with a percent reduction limit, the percent reduction of NOx emissions shall also be reported. [District Rules 2520, 9.4.2 and 4702, 6.3.3] Federally Enforceable Through Title V Permit
- 16. The following test methods shall be used: NOx (ppmv) EPA Method 7E or ARB Method 100, CO (ppmv) EPA Method 10 or ARB Method 100, stack gas oxygen EPA Method 3 or 3A or ARB Method 100, and VOC (ppmv) EPA Method 25A or 25B, or ARB Method 100. Methane and ethane, which are exempt compounds, shall be excluded from the result of the VOC test. EPA approved alternative test methods may also be used to satisfy the source testing requirements of this permit with prior written approval from the APCO. [District Rules 1081 and 4702] Federally Enforceable Through Title V Permit
- 17. Source testing shall be conducted using the methods and procedures approved by the District. The District must be notified at least 30 days prior to any compliance source test, and a source test plan must be submitted for approval at least 15 days prior to testing. [District Rule 1081] Federally Enforceable Through Title V Permit
- Emissions source testing shall be conducted with the engine operating either at conditions representative of normal operations or conditions specified in the Permit to Operate. [District Rule 4702] Federally Enforceable Through Title V Permit
- 19. The results of each source test shall be submitted to the District within 60 days thereafter. [District Rule 1081] Federally Enforceable Through Title V Permit
- 20. This engine shall be operated and maintained in proper operating condition per the manufacturer's requirements as specified on the Inspection and Monitoring (I&M) plan submitted to the District. [District Rules 4702 and 2520, 9.4.2] Federally Enforceable Through Title V Permit
- 21. The permittee shall update the l&M plan for this engine prior to any planned change in operation. The permittee must notify the District no later than seven days after changing the l&M plan and must submit an updated l&M plan to the APCO for approval no later than 14 days after the change. The date and time of the change to the l&M plan shall be recorded in the engine's operating log. For modifications, the revised l&M plan shall be submitted to and approved by the APCO prior to issuance of the Permit to Operate. The permittee may request a change to the l&M plan at any time. [District Rules 2520, 9.4.2 and 4702] Federally Enforceable Through Title V Permit
- 22. NOx, CO, and VOC emissions shall be measured (source tested) not less than every 12 months. If compliance with the emission limits is demonstrated for 2 consecutive years, testing frequency may be reduced to every 24 months. If the unit fails to demonstrated compliance with the emission limits, the testing frequency shall return to not less than every 12 months. NOx percent reduction compliance shall be demonstrated every 24 months. [District Rules 2201, 2520 9.4.2, and 4702, 6.3.2] Federally Enforceable Through Title V Permit

Permit Unit Requirements for S-2234-28-8 (continued)

- Page 3 of 3
- 23. Permittee shall monitor the nitrogen oxides (NOx) concentration in the engine exhaust with a facility conducted noncertified self test at least on a monthly basis. [District Rule 2520, 9.4.2] Federally Enforceable Through Title V Permit
- 24. The permittee shall monitor and record the stack concentration of NOx, CO, and O2, using a portable emission monitor that meets District specifications, at least once every calendar quarter (in which a source test is not performed and the engine is operated) or, if the engine is operated less than 120 calendar days in a calendar year, at least once during that calendar year (in which a source test is not performed and the engine is operated). Monitoring shall not be required if the engine is not in operation, i.e. the engine need not be started solely to perform monitoring. Monitoring shall be performed within 5 days of restarting the engine unless monitoring has been performed within the last calendar quarter. Records must be maintained of the dates of non-operation to validate extended monitoring frequencies. [District Rule 4702] Federally Enforceable Through Title V Permit
- 25. If either the NOx or CO concentrations corrected to 15% O2, as measured by the portable analyzer, exceed the allowable emission concentration, the permittee shall return the emissions to within the acceptable range as soon as possible, but no longer than 8 hours after detection. If the portable analyzer readings continue to exceed the allowable emissions concentration after 8 hours, the permittee shall notify the District within the following 1 hour, and conduct a certified source test within 60 days of the first exceedance. In lieu of conducting a source test, the permittee may stipulate a violation has occurred, subject to enforcement action. The permittee must then correct the violation, show compliance has been re-established, and resume monitoring procedures. If the deviations are the result of a qualifying breakdown condition pursuant to Rule 1100, the permittee may fully comply with Rule 1100 in lieu of performing the notification and testing required by this condition. [District Rule 4702] Federally Enforceable Through Title V Permit
- 26. All alternate monitoring parameter emission readings shall be taken with the unit operating either at conditions representative of normal operations or conditions specified in the permit-to-operate. The analyzer shall be calibrated, maintained, and operated in accordance with the manufacturer's specifications and recommendations or a protocol approved by the APCO. Emission readings taken shall be averaged over a 15 consecutive-minute period by either taking a cumulative 15 consecutive-minute sample reading or by taking at least five (5) readings, evenly spaced out over the 15 consecutive-minute period. [District Rule 4702] Federally Enforceable Through Title V Permit
- 27. The permittee shall maintain records of: (1) the date and time of NOx, CO, and O2 measurements, (2) the O2 concentration in percent and the measured NOx and CO concentrations corrected to 15% O2, (3) make and model of exhaust gas analyzer, (4) exhaust gas analyzer calibration records, and (5) a description of any corrective action taken to maintain the emissions within the acceptable range. [District Rule 4702] Federally Enforceable Through Title V Permit
- 28. The facility conducted noncertified self test shall be performed for NOx according to ARB Method 100 (or EPA Method 7E). [District Rules 2201 and 2520, 9.4.2] Federally Enforceable Through Title V Permit
- 29. The permittee shall maintain an engine operating log to demonstrate compliance. The engine operating log shall include, on a monthly basis, the following information: total hours of operation, type of fuel used, maintenance or modifications performed, monitoring data, compliance source test results, and any other information necessary to demonstrate compliance. [District Rule 4702, 6.2.1] Federally Enforceable Through Title V Permit
- 30. Compliance with permit conditions in the Title V permit shall be deemed compliance with the following applicable requirements of SJVUAPCD Rule 4201; Kern County Rule 407. A permit shield is granted from these requirements. [District Rule 2520, 13.2] Federally Enforceable Through Title V Permit
- 31. Compliance with permit conditions in the Title V permit shall be deemed compliance with the following subsumed requirements: Kern County Rule 404. A permit shield is granted from these requirements. [District Rule 2520, 13.2] Federally Enforceable Through Title V Permit

PERMIT UNIT: S-2234-127-2

EXPIRATION DATE: 10/31/2016

SECTION: 26 TOWNSHIP: 30S RANGE: 23E

EQUIPMENT DESCRIPTION:

1,834 BHP WAUKESHA MODEL #7042 NATURAL GAS-FIRED IC ENGINE DRIVING A GAS COMPRESSOR (R-25) EQUIPPED WITH NON-SELECTIVE CATALYTIC REDUCTION, AIR/FUEL RATIO CONTROLLER, POSITIVE CRANKCASE VENTILATION, AND OPERATES AT VARIOUS UNSPECIFIED LOCATIONS WITHIN FACILITY S-2234

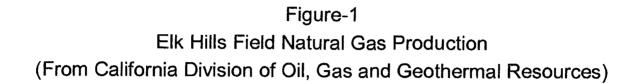
PERMIT UNIT REQUIREMENTS

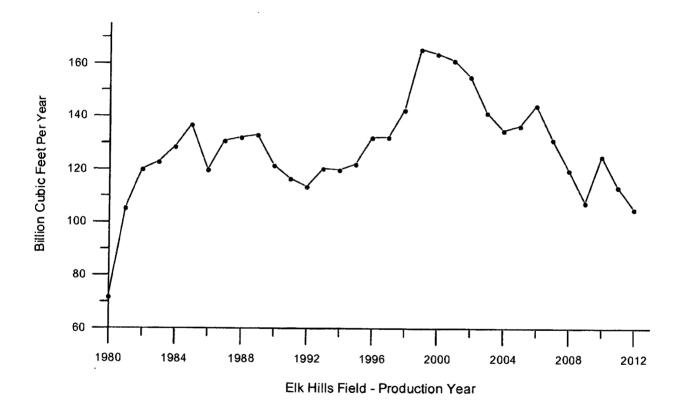
- 1. By October 19, 2012, the owner/operator shall submit an Authority to Construct (ATC) permit application to the District to comply with 40 CFR 63, ZZZZ. [District Rule 2010] Federally Enforceable Through Title V Permit
- 2. By July 1, 2012, the operator shall submit to the APCO an APCO-approvable emission control plan of all actions to be taken to satisfy the emission requirements of Section 5.2 of District Rule 4702. If there is no change to the previously-approved emission control plan, the operator shall submit a letter to the District indicating that the previously approved plan is still valid. [District Rule 4702, 6.1 and 7.5] Federally Enforceable Through Title V Permit
- 3. Operator shall notify the District by letter or fax at least 48-hours in advance of the re-location of this unit. [District Rule 2201] Federally Enforceable Through Title V Permit
- 4. Operator shall maintain records of compressor skid location and dates spent at each location and make such records available for District inspection upon request. [District Rule 2201] Federally Enforceable Through Title V Permit
- 5. This unit shall not operate within 1,000 feet of a kindergarten through 12 grade school. [CH&SC 42301.6] Federally Enforceable Through Title V Permit
- 6. Particulate matter emissions shall not exceed 0.1 grains/dscf in concentration. [District Rule 4201] Federally Enforceable Through Title V Permit
- 7. IC engine shall be equipped with air/fuel ratio controller which readily indicates air/fuel ratio setting within tolerance limits as recommended by the catalyst system supplier. [District Rule 2201] Federally Enforceable Through Title V Permit
- 8. The engine shall be equipped with a positive crankcase ventilation (PCV) system or a crankcase emissions control device of at least 90% control efficiency. [District Rule 2201] Federally Enforceable Through Title V Permit
- Emissions from this IC engine shall not exceed any of the following limits: NOx (as NO2) 5 ppmv @ 15% O2, VOC 25 ppmv @ 15% O2, CO 56 ppmv @ 15% O2, PM10 0.02 g/hp-hr, or SOx (as SO2) 0.011 g/hp-hr. [District Rules 2201 and 4702, 5.1] Federally Enforceable Through Title V Permit
- 10. Fugitive emissions, calculated using CAPCOA California Implementation Guidelines for Estimating Mass Emissions of Fugitive Hydrocarbon Leaks at Petroleum Facilities, Table IV-2c (Feb 1999), with no leaks greater than or equal to 10,000 ppm, shall not exceed 0.7 lb VOC/day. [District Rule 2201] Federally Enforceable Through Title V Permit
- 11. The fuel consumption limit for this engine shall not exceed 241,600 scf/day. [District Rule 2201] Federally Enforceable Through Title V Permit
- 12. The engine shall only burn natural gas with fuel gas sulfur concentration (as H2S) not exceeding 1.0 grains/100 dscf. [District Rule 2201] Federally Enforceable Through Title V Permit

PERMIT UNIT REQUIREMENTS CONTINUE ON NEXT PAGE These terms and conditions are part of the Facility-wide Permit to Operate.

Permit Unit Requirements for S-2234-127-2 (continued)

- 13. If the IC engine is fired on PUC-regulated natural gas, the permittee shall retain on file, copies of all natural gas bills. [District Rule 2201] Federally Enforceable Through Title V Permit
- 14. If the engine is fired on non-PUC-regulated natural gas, then the sulfur content of the natural gas being fired in the IC engine shall be determined using ASTM method D 1072, D 3031, D 4084, D 3246 or double GC. [District Rule 2201] Federally Enforceable Through Title V Permit
- 15. If the engine is fired on non-PUC-regulated natural gas, the sulfur content of each fuel source shall be tested weekly except that if compliance with the fuel sulfur content limit has been demonstrated for 8 consecutive weeks for a fuel source, then the testing frequency shall be quarterly. If a test shows noncompliance with the sulfur content requirement, the source must return to weekly testing until eight consecutive weeks show compliance. [District Rule 2201] Federally Enforceable Through Title V Permit
- 16. The permittee shall install and operate a nonresettable elapsed operating time meter. The elapsed operating time meter shall be properly maintained in accordance with the manufacturer's specifications. [District Rule 4702, 5.6.6] Federally Enforceable Through Title V Permit
- 17. Source testing to measure the stack NOx, CO, and VOC emissions from this unit shall be conducted not less than once every twelve (12) months. [District Rules 2201 and 4702] Federally Enforceable Through Title V Permit
- 18. Emissions source testing shall be conducted with the engine operating either at conditions representative of normal operations or conditions specified in the Permit to Operate. [District Rule 4702, 6.3.3] Federally Enforceable Through Title V Permit
- 19. Source testing shall be conducted using the methods and procedures approved by the District. The District must be notified at least 30 days prior to any compliance source test, and a source test plan must be submitted for approval at least 15 days prior to testing. [District Rule 1081] Federally Enforceable Through Title V Permit
- 20. The following test methods shall be used: NOx (ppmv) EPA Method 7E or ARB Method 100, CO (ppmv) EPA Method 10 or ARB Method 100, stack gas oxygen EPA Method 3 or 3A or ARB Method 100, and VOC (ppmv) EPA Method 25A or 25B, or ARB Method 100, ASTM D3246 or double GC for H2S and mercaptans, and EPA Method 21 for fugitive components. Methane and ethane, which are exempt compounds, shall be excluded from the result of the VOC test. EPA approved alternative test methods may also be used to satisfy the source testing requirements of this permit with prior written approval from the APCO. [District Rule 4702, 6.4] Federally Enforceable Through Title V Permit
- 21. For emissions source testing, the arithmetic average of three 30-consecutive-minute test runs shall apply. If two of three runs are above an applicable limit, the test cannot be used to demonstrate compliance with an applicable limit. VOC emissions shall be reported as methane. NOx, CO and VOC concentrations shall be reported in ppmv, corrected to 15% oxygen. [District Rule 4702, 6.3.3] Federally Enforceable Through Title V Permit
- 22. Source testing shall be by District witnessed, or authorized, sample collection by ARB certified testing laboratory. [District Rule 1080] Federally Enforceable Through Title V Permit
- 23. The results of each source test shall be submitted to the District within 60 days thereafter. [District Rule 1080] Federally Enforceable Through Title V Permit
- 24. This engine shall be operated and maintained in proper operating condition per the manufacturer's requirements as specified on the Inspection and Monitoring (I&M) plan submitted to the District. [District Rule 4702, 6.5] Federally Enforceable Through Title V Permit
- 25. The permittee shall update the l&M plan for this engine prior to any planned change in operation. The permittee must notify the District no later than seven days after changing the l&M plan and must submit an updated I&M plan to the APCO for approval no later than 14 days after the change. The date and time of the change to the l&M plan shall be recorded in the engine's operating log. For modifications, the revised I&M plan shall be submitted to and approved by the APCO prior to issuance of the Permit to Operate. The permittee may request a change to the I&M plan at any time. [District Rule 4702, 6.5.9] Federally Enforceable Through Title V Permit


Permit Unit Requirements for S-2234-127-2 (continued)


- 26. The permittee shall monitor and record the stack concentration of NOx, CO, and O2, using a portable emission monitor that meets District specifications, at least once every calendar quarter (in which a source test is not performed and the engine is operated) or, if the engine is operated less than 120 calendar days in a calendar year, at least once during that calendar year (in which a source test is not performed and the engine is operated). Monitoring shall not be required if the engine is not in operation, i.e. the engine need not be started solely to perform monitoring. Monitoring shall be performed within 5 days of restarting the engine unless monitoring has been performed within the last calendar quarter. Records must be maintained of the dates of non-operation to validate extended monitoring frequencies. [District Rule 4702] Federally Enforceable Through Title V Permit
- 27. If either the NOx or CO concentrations corrected to 15% O2, as measured by the portable analyzer, exceed the allowable emission concentration, the permittee shall return the emissions to within the acceptable range as soon as possible, but no longer than 8 hours after detection. If the portable analyzer readings continue to exceed the allowable emissions concentration after 8 hours, the permittee shall notify the District within the following 1 hour, and conduct a certified source test within 60 days of the first exceedance. In lieu of conducting a source test, the permittee may stipulate a violation has occurred, subject to enforcement action. The permittee must then correct the violation, show compliance has been re-established, and resume monitoring procedures. If the deviations are the result of a qualifying breakdown condition pursuant to Rule 1100, the permittee may fully comply with Rule 1100 in lieu of performing the notification and testing required by this condition. [District Rule 4702] Federally Enforceable Through Title V Permit
- 28. All alternate monitoring parameter emission readings shall be taken with the unit operating either at conditions representative of normal operations or conditions specified in the permit-to-operate. The analyzer shall be calibrated, maintained, and operated in accordance with the manufacturer's specifications and recommendations or a protocol approved by the APCO. Emission readings taken shall be averaged over a 15 consecutive-minute period by either taking a cumulative 15 consecutive-minute sample reading or by taking at least five (5) readings, evenly spaced out over the 15 consecutive-minute period. [District Rule 4702] Federally Enforceable Through Title V Permit
- 29. The permittee shall maintain records of: (1) the date and time of NOx, CO, and O2 measurements, (2) the O2 concentration in percent and the measured NOx and CO concentrations corrected to 15% O2, (3) make and model of exhaust gas analyzer, (4) exhaust gas analyzer calibration records, and (5) a description of any corrective action taken to maintain the emissions within the acceptable range. [District Rule 4702, 6.2.1] Federally Enforceable Through Title V Permit
- 30. The results of the measurements taken with the District approved analyzer shall be retained on-site at all times. [District Rule 1070] Federally Enforceable Through Title V Permit
- 31. This operation shall comply with the requirements of District Rule 4409, as specified on facility wide permit S-2234-0. [District Rule 4409] Federally Enforceable Through Title V Permit
- 32. The permittee shall maintain an engine operating log to demonstrate compliance. The engine operating log shall include, on a monthly basis, the following information: total hours of operation, type, quantity (cubic feet of gas or gallons of liquid) and sulfur content of fuel used, maintenance or modifications performed, monitoring data, compliance source test results, and any other information necessary to demonstrate compliance. [District Rules 2201 and 4702, 6.2.1] Federally Enforceable Through Title V Permit
- 33. All records shall be maintained, retained on-site for a minimum of five (5) years, and shall be made available for District inspection upon request. [District Rules 1070, 2201, and 4702, 6.2.1 and 6.2.2] Federally Enforceable Through Title V Permit

Occidental of Elk Hills, Inc. Facility Number: S-2234 ERC Project Number: S-1133368

Appendix C

Elk Hills Field Historical Natural Gas Production

Occidental of Elk Hills, Inc. Facility Number: S-2234 ERC Project Number: S-1133368

Appendix D

35R Gas Plant (S-2234-19) Gas Quality Analysis

Gas Analysis for 35R Plant 2010

	Molecular		Weight of	Weight Percent	
Compounds	Weight	Mole %	Constituent	As Measured	Normalized
02	31.999	0.000	0.000	0.000	0.000
N2	28.014	0.323	0.090	0.434	0.434
CO2	44.010	3.483	1.533	7.359	7.359
C1	16.042	80.673	12.942	62.128	62.128
C2	30.069	8.239	2.477	11.893	11.893
C3	44.096	4.473	1.972	9.469	9.469
IC4	58.122	0.605	0.352	1.688	1.688
NC4	58.122	1.240	0.721	3.460	3.460
IC5	72.149	0.325	0.234	1.126	1.126
NC5	72.149	0.297	0.214	1.029	1.029
C6+	86.175	0.342	0.295	1.415	1.415
Totals	-	100.000	20.831	100.000	100,000

Total Organic Gases (TOG) for 35R Plant

	Molecular Weight	Mole %	Weight of Constituent	Weight Percent	
Compounds				As Measured	Normalized
C1	16.042	80.673	12.942	62.128	67.379
C2	30.069	8.239	2.477	11.893	12.898
C3	44.096	4.473	1.972	9.469	10.269
IC4	58.122	0.605	0.352	1.688	1.831
NC4	58.122	1.240	0.721	3.460	3.752
IC5	72.149	0.325	0.234	1.126	1.221
NC5	72.149	0.297	0.214	1.029	1.116
C6+	86.175	0.342	0.295	1.415	1.534
Total VOC	-	7.282	3.788	18.186	19.723
Totals	-	96.194	19.207	92.207	100.000

Volatile Organic Compounds (VOC) for 35R Plant

	Molecular	Mole %	Mole % Weight of Constituent	Weight Percent	
Compounds	Weight			As Measured	Normalized
C3	44.096	4.473	1.972	9.469	52.067
IC4	58.122	0.605	0.352	1.688	9.282
NC4	58.122	1.240	0.721	3.460	19.025
IC5	72.149	0.325	0.234	1.126	6.190
NC5	72.149	0.297	0.214	1.029	5.657
C6+	86.175	0.342	0.295	1.415	7.780
Totals	-	7.282	3.788	18.186	100.000

Greenhouse Gases (GHG) for 35R Plant

	Molecular		Weight of	Weight Percent	
Compounds	Weight	Mole %	, U	As Measured	Normalized
CO2	44.010	1.610	0.709	3.402	4.673
C1	16.042	90.100	14.454	69.388	95.327
Totals	-	91.710	15.162	72.789	100.000

Gas Analysis for 35R Plant 2011

			Weight of	Weight	Percent
Compounds	Molecular Weight	Mole %	Weight of Constituent	As Measured	Normalized
O2	31.999	0.000	0.000	0.000	0.000
N2	28.014	0.651	0.182	0.766	0.766
CO2	44.010	3.619	1.593	6.690	6.690
C1	16.042	69.073	11.081	46.546	46.546
C2	30.069	12.752	3.834	16.107	16.107
C3	44.096	8.570	3.779	15.874	15.874
IC4	58.122	1.209	0.703	2.952	2.952
NC4	58.122	2.740	1.593	6.690	6.690
IC5	72.149	0.599	0.432	1.815	1.815
NC5	72.149	0.492	0.355	1.491	1.491
C6+	86.175	0.295	0.254	1.068	1.068
Totals	-	100.000	23.806	100.000	100.000

Total Organic Gases (TOG) for 35R Plant

			Weight of	Weight	Percent
Compounds	Molecular Weight	Mole %	Constituent	As Measured	Normalized
C1	16.042	69.073	11.081	46.546	50.297
C2	30.069	12.752	3.834	16.107	17.405
C3	44.096	8.570	3.779	15.874	17.153
C3 IC4	58.122	1.209	0.703	2.952	3.190
NC4	58.122	2.740	1.593	6.690	7.229
IC5	72.149	0.599	0.432	1.815	1.962
NC5	72.149	0.492	0.355	1.491	1.611
C6+	86.175	0.295	0.254	1.068	1.154
Total VOC	-	13.905	7.116	29.890	32.299
Totals	-	95.730	22.031	92.544	100.000

Volatile Organic Compounds (VOC) for 35R Plant

	Molecular		Weight of	Weight Percent		
Compounds	Weight	Mole %	Constituent As Measured		Normalized	
C3	44.096	8.570	3.779	15.874	53.109	
IC4	58.122	1.209	0.703	2.952	9.875	
NC4	58.122	2.740	1.593	6.690	22.381	
IC5	72.149	0.599	0.432	1.815	6.074	
NC5	72.149	0.492	0.355	1.491	4.989	
C6+	86.175	0.295	0.254	1.068	3.573	
Totals	-	13.905	7.116	29.890	100.000	

Greenhouse Gases (GHG) for 35R Plant

	Molecular		Weight of	Weight Percent		
Compounds	Weight	Mole %	•	As Measured	Normalized	
CO2	44.010	3.619	1.593	6.690	12.567	
C1	16.042	69.073	11.081	46.546	87.433	
Totals	-	72.692	12.673	53.237	100.000	

Gas Analysis for 35R Plant Average

	Molecular		Weight of	Weight Percent		
Compounds	Weight	Mole %	Constituent	As Measured	Normalized	
02	31.999	0.000	0.000	0.000	0.000	
N2	28.014	0.487	0.136	0.611	0.611	
CO2	44.010	3.551	1.563	7.002	7.002	
C1	16.042	74.873	12.011	53.818	53.818	
C2	30.069	10.496	3.156	14.140	14.140	
C3	44.096	6.522	2.876	12.885	12.885	
IC4	58.122	0.907	0.527	2.362	2.362	
NC4	58.122	1.990	1.157	5.182	5.182	
IC5	72.149	0.462	0.333	1.494	1.494	
NC5	72.149	0.395	0.285	1.275	1.275	
C6+	86.175	0.319	0.274	1.230	1.230	
Totals	-	100.000	22.318	100.000	100.000	

Total Organic Gases (TOG) for 35R Plant

	Molecular		Weight of	Weight	Percent
Compounds	Weight	Mole %	Constituent	As Measured	Normalized
C1	16.042	74.873	12.011	53.818	58.253
C2	30.069	10.496	3.156	14.140	15.306
C3	44.096	6.522	2.876	12.885	13.947
IC4	58.122	0.907	0.527	2.362	2.557
NC4	58.122	1.990	1.157	5.182	5.610
IC5	72,149	0.462	0.333	1.494	1.617
NC5	72.149	0.395	0.285	1.275	1.380
C6+	86.175	0.319	0.274	1.230	1.331
Total VOC	-	10.594	5.452	24.428	26.441
Totals	-	95.962	20.619	92.386	100.000

Volatile Organic Compounds (VOC) for 35R Plant

	Molecular		Weight of	Weight Percent		
Compounds	Weight	Mole %	Constituent	As Measured Normalize		
C3	44.096	6.522	2.876	12.885	52.747	
IC4	58.122	0.907	0.527	2.362	9.669	
NC4	58.122	1.990	1.157	5.182	21.215	
IC5	72.149	0.462	0.333	1.494	6.114	
NC5	72.149	0.395	0.285	1.275	5.221	
C6+	86.175	0.319	0.274	1.230	5.034	
Totals	-	10.594	5.452	24.428	100.000	

Greenhouse Gases (GHG) for 35R Plant

	Molecular		Weight of	Weight Percent			
Compounds	Weight			As Measured	Normalized		
CO2	44.010	3.5 5 1	1.563	7.002	11.513		
C1	16.042	74.873	12.011	53.818	88.487		
Totals	-	78.424	13.574	60.820	100.000		
Note: Lb/CO	2 to Lb/TOG:		0.0789825				

Appendix E

.

35R Gas Plant (S-2234-19) Fugitive VOC Component Emissions during Baseline Period

Occidental of Elk Hills S-1133368, 35R LOAP S-2234-19

Fugitive Emissions Using Screening Emission Factors

California Implementation Guidelines for Estimating Mass Emissions of Fugitive Hydrocarbon Leaks at Petroleum Facilities Table IV-2c. Oil and Gas Production Screening Value Ranges Emission Factors

Percentage of components with ≥ 10,000 ppmv leaks allowed?	0 %
Weight percentage of VOC in the total organic compounds in gas (neglect non-organics)?	26.44 %
Weight percentage of VOC in the total organic compounds in oil (neglect non-organics)?	100 %

			Total allowable	Screening Val	ue EF - TOC	VOC
Equipment Type	Service	Component Count	leaking components	< 10,000 ppmv (lb/day/source)	> 10,000 ppmv (lb/day/source)	emissions (Ib/day)
Valves	Gas/Light Liquid	3,635	0	1.852E-03	7.333E+00	1.78
	Light Crude Oil	2,656	0	1.005E-03	3.741E+00	2.67
	Heavy Crude Oil	0	0	7.408E-04	N/A*	0.00
Pump Seals	Gas/Light Liquid	0	0	5.270E-02	4.709E+00	0.00
	Light Crude Oil	15	0	1.402E-02	4.709E+00	0.21
	Heavy Crude Oil	0	0	N/A	N/A	N/A
Others	Gas/Light Liquid	953	0	7.778E-03	7.281E+00	1.96
	Light Crude Oil	678	0	6.931E-03	3.757E-01	4.70
	Heavy Crude Oil	0	0	3.016E-03	N/A*	0.00
Connectors	Gas/Light Liquid	14,659	0	6.349E-04	1.370E+00	2.46
	Light Crude Oil	8,878	0	5.291E-04	1.238E+00	4.70
	Heavy Crude Oil	0	0	4.233E-04	4.233E-04	0.00
Flanges	Gas/Light Liquid	3,156	0	1.482E-03	3.228E+00	1.24
	Light Crude Oil	1,858	0	1.270E-03	1.376E+01	2.36
	Heavy Crude Oil	0	0	1.217E-03	N/A*	0.00
Open-ended	Gas/Light Liquid	0	0	1.270E-03	2.905E+00	0.00
Lines	Light Crude Oil	0	0	9.524E-04	1.175E+00	0.00
	Heavy Crude Oil	0	0	7.937E-04	3.762E+00	0.00

* Emission factor not available. All components from equipment type and service will be assessed as < 10,000 ppmv

Total VOC Emissions = 22.1 lb/day

Appendix F

Engine K-9 (S-2234-27) Summary of Source Test Results and Fuel Analysis during Baseline Period

Engine K9 February 24, 2010 Sumary of Source Test Results

Test	Engine	Engine	Fuel Rate	Heat Input	F-Factor (60F)	Excess	Measured	Engine	BSFC
Date	ĬĎ	PTO	MCFD	MMBtu/Hr	SDCF/MMBtu	O2 %	BHP*Hr	Load	Btu/Bhp*hr
02/24/10	К 9	S-2234-27	517.00	24.3830	8,537.65	13.27	3,167.00	0.9548	7,699.09
02/24/10	К 9	S-2234-27	515.00	24.2887	8,537.65	15.49	3,160.00	0.9498	7,686.29
02/24/10	К 9	S-2234-27	516.00	24.3359	8,537.65	13.47	3,128.00	0.9374	7,780.00
Test Averag	e		516.00	24.3359	8,537.65	14.08	3,151.67	0.9473	7,721.79

Test	Engine		Criterera Pol	lutants (ppmv (GHG (@15% O2)				
Date	Ď ĺ	NOx	VOC	CO	SOx	PM10	CH4 ppmv	CO2 %	N2O
02/24/10	К9	29.91	110.00	183.00	0.04		1,237.99	2.88	
02/24/10	К9	62.24	139.00	128.00	0.03		1,564.97	2.88	
02/24/10	К9	39.82	118.00	97.02	0.04		1,241.94	2.88	
Test Averag	e	43.99	122.33	136.01	0.04		1,348.30	2.88	

Test	Engine		Process Em	ission Factors		CH4	CO2	N2O	
Date	ĪD	NOx	NOX VOC CO SOX PM10					Kg/MMBtu	g/MMBtu
02/24/10	К 9	0.3828	0.4897	1.4257	0.0008	0.0349	715.2876	45.8015	0.1000
02/24/10	К 9	0.7953	0.6178	0.9956	0.0005	0.0348	904.2084	45.7980	0.1000
02/24/10	К9	0.5150	0.5308	0.7638	0.0008	0.0352	717.5660	45.7620	0.1000
Test Averag	e	0.5644	0.5461	1.0617	0.0007	0.0350	779.0207	45.7872	0.1000

Engine K9 April 13, 2011 Sumary of Source Test Results

Test	Engine	Engine	Fuel Rate	Heat Input	F-Factor (60F)	Excess	Measured	Engine	BSFC
Date	ĪD	PTO	MCFD	MMBtu/Hr	SDCF/MMBtu	O2 %	BHP*Hr	Load	Btu/Bhp*hr
04/13/11	К 9	S-2234-27	448.00	21.5301	8,544.55	15.86	2,982.00	0.8911	7,220.03
04/13/11	К 9	S-2234-27	443.00	21.2898	8,544.55	14.04	2,929.00	0.8788	7,268.64
04/13/11	К 9	S-2234-27	443.00	21.2898	8,544.55	13.72	2,930.00	0.8769	7,266.16
Test Averag	e		444.67	21.3699	8,544.55	14.54	2,947.00	0.8823	7,251.61

Test	Engine		Criterera Po	llutants (ppmv		GHG (@15% O2)			
Date	ĪĎ	NOx	VOC	CO	SOx	PM10	CH4 ppmv	CO2 %	N2O
04/13/11	К9	104.00	52.11	68.43	0.01		1,752.44	2.82	
04/13/11	K 9	60.27	41.82	89.43	0.01		1,401.90	2.82	
04/13/11	К9	69.47	39.59	92.87	0.01		1,235.88	2.83	
Test Averag	е	77.91	44.51	83.58	0.01		1,463.40	2.82	

Test	Engine		Process Emis	sion Factors (CH4	CO2	N2O	
Date	ID	NOx	NOX VOC CO SOX PM10					Kg/MMBtu	g/MMBtu
04/13/11	К9	1.2493	0.2177	0.5003	0.0001	0.0327	1013.3413	44.8727	0.1000
04/13/11	К9	0.7289	0.1759	0.6583	0.0002	0.0329	810.6399	44.8587	0.1000
04/13/11	К9	0.8398	0.1665	0.6834	0.0002	0.0329	714.6409	44.9502	0.1000
Test Averag	e	0.9393	0.1867	0.6140	0.0001	0.0329	846.2073	44.8939	0.1000

S-2234-27-7 Fuel Analysis

E-mail pgtech@earthlink.net

4100 9urr Street P.O. Box 80847 Bekersfield, CA 93380-0847 Telephone (661) 324-1317 Fex (661) 324-2746

smemorivn3		es & Testin	8			Sample	u- 2/24/2010
P.O. Box 252						Inndu:E	c: 2/28/2010
Gilbert, AZ 85	233					Analyze	d 2/28/2010
						Reporte	ia: 3/2/2010
	Gas /	Analysis	by Chro	matogra	phy - ASTM	I D 1945/D 3588	¢.
ompanys	4				· · · · · · · · · · · · · · · · · · ·	Lab No	
ocation:	Fuel Ga	14.00			_	Sample Tim	
Jesaription:	K-11	K-09,	K-11	K-11	KIB	Sample Typ	
omponent		Mole	<u>,</u>	(```''ر	Velght %	G/MC#	

xygen		NC			0.00		
trogen			.24		0.34		
erbon Dioxid	8		.39		5.39		
drogen		NC			0.00		
arbon Mono		NC			0.00		
drogen Sulf	0ê	NC)				
lethane		-	.35		70.22		
thana		5	.84		9.01		
ropane		4	.99		11.28	1.37	7
o-Butane		0	.42		1.25	0.13	3
Butana		0	.52		1 55	C.18	•
-Pentane		0	.11		0.41	C.C4)
Pentane		Ŭ.	.05		0.18	C.C1	-
kenes Plus		0.	.08		0.35	C.03	
als		100	.00		100.00	1 77	I
kills Voluma.	na/lo	19.	48	Valu	es Corrected		
npressibility (2)	Facior	0.99	71		mpressibility		
offic Gravity, C	beratuale	0.67	33		0.6750	Carton	73.587
-						Hyampen	22.166
88						Oxygen	3.922
าบสอ () ny	1131	1.9		1135.2	Nincgen	0.345
	Net	1112			1115.3	Sulfer	0.000
TU/ID ()ry	22023			22087.8		0.000
	Nel	21837			21701 1	F FACTOR @	8669
,						AR SAG F COOPAUND	
)rv	1024	0.0		1027.0	or by r coorword	~
	Vel	1006			1009.0	F FACTOR @	8539
)ry	19924			19982.8	-	
	Vet	19575			19633.1	65 deg F. Curringham	Li .
		Sulfida, ppm		No	Toplet	Nethod	gcafo
	otal Sullu	••			0.32	Walkad	GC/FFD
C	low Pol ni,	deg F		No	Tenne	Nettos	Bu:sau of Mines
<u>N</u>	loiature, ft	BH20MMCF		No	Teetad	Alathoa	Bureau of Mines
una Defected						7 Frid	و برزی و بیش و بیش و در در در در میشوند و بیش و بر و بیش و

E-mail pgtech@earthlink.net

fally fraing the perfect

4100 Burn Street PO. Box 60647 Bakersfield, CA 93380-0647 Telephone (651) 324-1317 Fax (661) 324-2749

Environmental Se P.O. Box 2525	arvices & Testing		Samplad: Submitted	4/13/2011 4/15/2011
Giluent, AZ 8523	١		Ansiyeod.	4/16/3011
0.0010.7.20020			Reported	4/18/2911
	Gas Analysis by	Chromotography - AS	5TM D 3588-91	
Company Ox			Luis No.:	110355-4
Lacadon Fu	ei Gae		Samplo Tima.	
Description: K-I	,		Samika Typo:	
Component	Nijio %,	Wolght %	QUNICP	
Oxygon	ND	0.00		
Nitrogen	0.58	0.82		
Carbon Dioxide	2,09	4.63		
Hydrogen	ND	0.00		
Caroon Monoxide	ND ND	0.00		
Hydrogen Suilido	ND			
Methanc	84 87	68.37		
Ethane	4,82	7 29		
Propane	6.33	14.05	1 747	
ธม-ธีนุเลกษ	0.42	1.23	0 135	
n-Butane	06.0	1.76	0.190	
so-Pontana	G.22	0.60	0.081	
n-Penlanu	C.16	0.58	0.058	
Haxanas Plus	0.11	0,49	0.045	
Tcla's	100.90	100.00	2.258	
Specific Volumo, All	19.10	Values Corrected		
Compressibility 12, Fe		for Compressibility	CHONS	Weight %
Briecilo Stavily, Cirk	utoled 0,6860	0.6878	Centon	73.771
· •			•	22 544

185 102.4 1.4 60	-t			5 7mm	وم. معاريفة بعري فيادي بيب بيد دار
	Molsture Ibo	H20/MMCP	ADI Toslec	Magua	Bureau of Minea
	Daw Print, day P		Not Tacieo	Manual	Bureev of Winas
	Tetel Sutha	բիո	3.09	Metros	30690
	Hydrogen Si	aide, ppm	Not Testad	Method	OUPPO
BIUID	Wat	19589.6	18649.3		
811U/ID	ρ _{lý}	19938 5	19969.3	as ged F, becknikerte	
	Wor	1025.8	1029 0	F FACTOR (4)	4546
BTG(f)	Ø <i>г</i> ,	1044 1	1047.3		
RET				SB day P. ctol/HADT /	
BTU.tb	YVal	21640.2	21706.2	H FACTOR O	8676
BIUND	Ofy .	22025.7	22092 0		
	Vien	1133.2	1136 7	Sullar	0 0 0
BIUME	C ry	1153.4	1156 9	Ninoboa	0.818
GROSS				CxyBan	3 368
	••			hydrotian	22.045
Brincia Gravia	b. Colculated	0,6260	0.6878	Centon	13.111

Appendix G

Engine K-9 (S-2234-27) Summary of Historical Actual Emissions and Gas Compressor Fugitive VOC Emissions during Baseline Period

S-2234-27-7 Criteria Pollutant Monthly Calculations Engine: K-9

2010	Fuel Use	Heating	BSFC		I	b/month		
2010	MMCF	Value	BTU/BHP*HR	NOx	VOC	со	SOx	PM10
January	11.84	1,131.90	7,721.79	2,160.25	2,090.32	4,063.80	2.64	133.89
February	14.82	1,131.90	7,721.79	2,703.20	2,615.70	5,085.19	3.30	167.55
March	9.55	1,131.90	7,721.79	1,742.25	1,685.85	3,277.47	2.13	107.99
April	15.44	1,131.90	7,721.79	2,815.95	2,724.80	5,297.29	3.44	174.54
May	9.51	1,131.90	7,721.79	1,734.15	1,678.02	3,262.23	2.12	107.48
June	14.71	1,131.90	7,721.79	2,681.99	2,595.18	5,045.29	3.27	166.23
July	16.01	1,131.90	7,721.79	2,919.25	2,824.76	5,491.62	3.56	180.94
August	16.12	1,131.90	7,721.79	2,939.77	2,844.61	5,530.22	3.59	182.21
September	14.88	1,131.90	7,721.79	2,714.42	2,626.56	5,106.29	3.31	168.24
October	15.25	1,131.90	7,721.79	2,781.72	2,691.68	5,232.89	3.39	172.41
November	16.06	1,131.90	7,721.79	2,928.95	2,834.15	5,509.87	3.57	181.54
December	15.19	1,131.90	7,721.79	2,771.19	2,681.49	5,213.10	3.38	171.76
Total	169.39	-	-	30,893.08	29,893.12	58,115.26	37.69	1,914.79

2014	Fuel Use	Heating	BSFC		1	b/month		
2011	MMCF	Value	BTU/BHP*HR	NOx	VOC	со	SOx	PM10
January	15.22	1,153.40	7,251.61	5,014.39	996.67	3,277.80	0.80	175.37
February	10.54	1,153.40	7,251.61	3,470.40	689.79	2,268.52	0.55	121.37
March	11.71	1,153.40	7,251.61	3,855.60	766.35	2,520.32	0.61	134.84
April	13.83	1,153.40	7,251.61	4,554.06	905.18	2,976.89	0.72	159.27
May	14.38	1,153.40	7,251.61	4,736.17	941.37	3,095.93	0.75	165.64
June	14.80	1,153.40	7,251.61	4,874.54	968.88	3,186.38	0.77	170.48
July	15.02	1,153.40	7,251.61	4,946.45	983.17	3,233.38	0.79	172.99
August	15.83	1,153.40	7,251.61	5,215.08	1,036.56	3,408.98	0.83	182.39
September	15.09	1,153.40	7,251.61	4,970.92	988.03	3,249.38	0.79	173.85
October	15.96	1,153.40	7,251.61	5,256.65	1,044.83	3,436.15	0.83	183.84
November	13.49	1,153.40	7,251.61	4,443.33	883.17	2,904.50	0.71	155.39
December	16.68	1,153.40	7,251.61	5,492.38	1,091.68	3,590.24	0.87	192.08
Total	172.54	-	-	56,829.97	11,295.68	37,148.46	9.02	1,987.49

2010 Criteria Pollutant Quarterly Emissions S-2234-27-7

			2010			QTR Average (Ib/QTR)				
	NOx	VOC	CO	SOx	PM10	NOx	VOC	co	SOx	PM10
January	2,160.25	2,090.32	4,063.80	2.64	133.89					
February	2,703.20	2,615.70	5,085.19	3.30	167.55	6,605.69	6,391.88	12,426.46	8.06	409.43
March	1,742.25	1,685.85	3,277.47	2.13	107.99					
April	2,815.95	2,724.80	5,297.29	3.44	174.54					
May	1,734.15	1,678.02	3,262.23	2.12	107.48	7,232.09	6,998.00	13,604.81	8.82	448.25
June	2,681.99	2,595.18	5,045.29	3.27	166.23					
July	2,919.25	2,824.76	5,491.62	3.56	180.94					
August	2,939.77	2,844.61	5,530.22	3.59	182.21	8,573.44	8,295.93	16,128.13	10.46	531.39
September	2,714.42	2,626.56	5,106.29	3.31	168.24					
October	2,781.72	2,691.68	5,232.89	3.39	172.41					
November	2,928.95	2,834.15	5,509.87	3.57	181.54	8,481.86	8,207.32	15,955.86	10.35	525.72
December	2,771.19	2,681.49	5,213.10	3.38	171.76					
Total	30,893.08	29,893.12	58,115.26	37.69	1,914.79	30,893.08	29,893.12	58,115.26	37.69	1,914.79

2011 Criteria Pollutant Quarterly Emissions S-2234-27-7

			2011				QTR	Average (lb/0	QTR)	
	NOx	VOC	CO	SOx	PM10	NOx	VOC	CO	SOx	PM10
January	5,014.39	996.67	3,277.80	0.53	175.37					
February	3,470.40	689.79	2,268.52	0.37	121.37	12,340.39	2,452.81	8,066.63	1.31	431.58
March	3,855.60	766.35	2,520.32	0.41	134.84					
April	4,554.06	905.18	2,976.89	0.48	159.27					
May	4,736.17	941.37	3,095.93	0.50	165.64	14,164.78	2,815.43 9	9,259.20	1.51	495.38
June	4,874.54	968.88	3,186.38	0.52	170.48					
July	4,946.45	983.17	3,233.38	0.53	172.99					
August	5,215.08	1,036.56	3,408.98	0.56	182.39	15,132.44	3,007.76	9,891.74	1.61	529.22
September	4,970.92	988.03	3,249.38	0.53	173.85					
October	5,256.65	1,044.83	3,436.15	0.56	183.84					
November	4,443.33	883.17	2,904.50	0.47	155.39	15,192.36	3,019.67	9,930.90	1.62	531.32
December	5,492.38	1,091.68	3,590.24	0.58	192.08]				
Total	56,829.97	11,295.68	37,148.46	6.05	1,987.49	56,829.97	11 ,295.6 8	37,148.46	6.05	1,987.49

Two Year Criteria Pollutant Average Quarterly Emissions S-2234-27-7

		2 Year	Average (lb/n	nonth)		QTR 2yr Average (Ib/QTR)					
	NOx	VOC	CO	SOx	PM10	NOx	VOC	CO	SOx	PM10	
January	3,587.32	1,543.50	3,670.80	1.58	154.63						
February	3,086.80	1,652.74	3,676.86	1.83	144.46	9,473.04	4,422.34	10,246.55	4.69	420.50	
March	2,798.92	1,226.10	2,898.89	1.27	121.41						
April	3,685.01	1,814.99	4,137.09	1.96	166.90						
May	3,235.16	1,309.70	3,179.08	1.31	136.56	10,698.43	4,906.71	11,432.00	5.17	471.82	
June	3,778.27	1,782.03	4,115.83	1.90	168.35						
July	3,932.85	1,903.96	4,362.50	2.04	176.96						
August	4,077.43	1,940.59	4,469.60	2.07	182.30	11,852.94	5,651.85	13,009.93	6.03	530.31	
September	3,842.67	1,807.29	4,177.83	1.92	171.04						
October	4,019.18	1,868.25	4,334.52	1.98	178.13						
November	3,686.14	1,858.66	4,207.19	2.02	168.47	11,837.11	5,613.50	12,943.38	5.98	528.52	
December	4,131.79	1,886.59	4,401.67	1.98	181.92						
Total	43,861.53	20,594.40	47,631.86	21.87	1,951.14	43,861.53	20,594.40	47,631.86	21.87	1,951.14	

Occidental of Elk Hills S-1133368, S-2234-27

Fugitive Emissions Using Screening Emission Factors

<u>California Implementation Guidelines for Estimating Mass Emissions</u> of Fugitive Hydrocarbon Leaks at Petroleum Facilities Table IV-2c. Oil and Gas Production Screening Value Ranges Emission Factors

Percentage of components with	0 %
Weight percentage of VOC in the total organic compounds in gas (neglect non-organics)?	26.44 %
Weight percentage of VOC in the total organic compounds in oil (neglect non-organics)?	100 %

			Total allowable	Screening Val	ue EF - TOC	VOC
Equipment		Component	leaking	< 10,000 ppmv	≥ 10,000 ppmv	emissions
Туре	Service	Count	components	(lb/day/source)	(lb/day/source)	(lb/day)
Valves	Gas/Light Liquid	22	0	1.852E-03	7.333E+00	0.01
	Light Crude Oil	4	0	1.005E-03	3.741E+00	0.00
	Heavy Crude Oil	0	0	7.408E-04	N/A*	0.00
Pump Seals	Gas/Light Liquid	0	0	5.270E-02	4.709E+00	0.00
	Light Crude Oil	0	0	1.402E-02	4.709E+00	0.00
	Heavy Crude Oil	0	0	N/A	N/A	N/A
Others	Gas/Light Liquid	0	0	7.778E-03	7.281E+00	0.00
	Light Crude Oil	0	0	6.931E-03	3.757E-01	0.00
	Heavy Crude Oil	0	0	3.016E-03	N/A*	0.00
Connectors	Gas/Light Liquid	154	0	6.349E-04	1.370E+00	0.03
	Light Crude Oil	40	0	5.291E-04	1.238E+00	0.02
	Heavy Crude Oil	0	0	4.233E-04	4.233E-04	0.00
Flanges	Gas/Light Liquid	46	0	1.482E-03	3.228E+00	0.02
	Light Crude Oil	6	0	1.270E-03	1.376E+01	0.01
	Heavy Crude Oil	0	0	1.217E-03	N/A*	0.00
Open-ended	Gas/Light Liquid	0	0	1.270E-03	2.905E+00	0.00
Lines	Light Crude Oil	0	0	9.524E-04	1.175E+00	0.00
	Heavy Crude Oil	0	0	7.937E-04	3.762E+00	0.00

* Emission factor not available. All components from equipment type and service will be assessed as < 10,000 ppmv

Total VOC Emissions =

0.1 lb/day

Appendix H

Engine K-10 (S-2234-28) Summary of Source Test Results and Fuel Analysis during Baseline Period

Engine K10 February 24, 2010 Sumary of Source Test Results

Test	Engine	Engine	Fuel Rate	Heat Input	F-Factor (60F)	Excess	Measured	Engine	BSFC
Date	ID	PTO	MCFD	MMBtu/Hr	SDCF/MMBtu	O2 %	BHP*Hr	Load	Btu/Bhp*hr
02/24/10	K10	S-2234-28	474.00	22.3550	8,537.65	13.27	3,020.00	0.9072	7,402.33
02/24/10	K10	S-2234-28	476.00	22.4494	8,537.65	15.49	3,101.00	0.9287	7,239.39
02/24/10	K10	S-2234-28	479.00	22.5908	8,537.65	13.47	3,128.00	0.9388	7,222.13
Test Averag	e		476.33	22.4651	8,537.65	14.08	3,083.00	0.9249	7,287.95

Test	Engine		Criterera Pol	llutants (ppmv	GHG (@15% O2)				
Date	ID	NOx	VOC	CÔ	SOx	PM10	CH4 ppmv	CO2 %	N2O
02/24/10	K10	78.97	268.00	224.00	0.04		1,237.99	2.88	· •••••
02/24/10	K10	95.78	285.00	21.25	0.03		1,564.97	2.88	
02/24/10	K10	94.99	240.00	125.00	0.04		1,241.94	2.88	
Test Averag	e	89.91	264.33	123.42	0.04		1,348.30	2.88	

Test	Engine		Process Em	ission Factors		CH4	CO2	N2O	
Date	ID	NOx	VOC	CO	SOx	PM10	g/MMBtu	Kg/MMBtu	g/MMBtu
02/24/10	K10	0.9718	1.1471	1.6779	0.0007	0.0335	715.2876	45.8015	0.1000
02/24/10	K10	1.1527	1.1930	0.1557	0.0005	0.0328	904.2084	45.7980	0.1000
02/24/10	K10	1.1405	1.0023	0.9135	0.0007	0.0327	717.5660	45.7620	0.1000
Test Averag	e	1.0883	1.1141	0.9157	0.0007	0.0330	779.0207	45.7872	0.1000

Engine K10 August 2, 2011 Sumary of Source Test Results

Test	Engine	Engine	Fuel Rate	Heat Input	F-Factor (60F)	Excess	Measured	Engine	BSFC
Date	ID	PTO	MCFD	MMBtu/Hr	SDCF/MMBtu	O2 %	BHP*Hr	Load	Btu/Bhp*hr
08/02/11	K10	S-2234-28	429.00	20.2381	8,544.55	15.86	3,109.00	0.9196	6,509.51
08/02/11	K10	S-2234-28	425.00	20.0494	8,544.55	14.04	3,110.00	0.9189	6,446.74
08/02/11	K10	S-2234-28	425.00	20.0494	8,544.55	13.72	3,112.00	0.9201	6,442.60
Test Averag	e		426.33	20.1123	8,544.55	14.54	3,110.33	0.9195	6,466.29

Test	Engine		Criterera Pollutants (ppmv @15% O2)					GHG (@15% O2)		
Date	ID	NOx	VOC	CO	SOx	PM10	CH4 ppmv	CO2 %	N2O	
08/02/11	K10	3.46	2.73	63.74	0.02		1,752.44	2.82		
08/02/11	K10	3.49	4.55	56.22	0.03		1,401.90	2.82		
08/02/11	K10	3.61	3.98	42.39	0.03		1,235.88	2.83		
Test Averag	e	3.52	3.75	54.12	0.03	()	1,463.40	2.82		

Test	Engine		Process Emis	sion Factors (CH4	CO2	N20		
Date	ID	NOx	VOC	CO	SOx	PM10	g/MMBtu	Kg/MMBtu	g/MMBtu
08/02/11	K10	0.0375	0.0103	0.4202	0.0004	0.0295	1,013.3413	44.8727	0.1000
08/02/11	K10	0.0374	0.0170	0.3670	0.0005	0.0292	810.6399	44.8587	0.1000
08/02/11	K10	0.0387	0.0148	0.2766	0.0005	0.0292	714.6409	44.9502	0.1000
Test Average	e	0.0379	0.0140	0.3546	0.0005	0.0293	846.2073	44.8939	0.1000

S-2234-28-8 Fuel Analysis

ð^{*} .

E-mail pgtech@earthlink.net

4100 Burn Street P.O. Box 80847 Bekarafield, CA.93380-C847 Telephone (661) 324-1317 Fex (651) 324-2746

Environmental S	8fV:C85	& Testing		Samplar.	2/24/2010
P.O. Box 2520	-	• •		Submittes:	2/28/2010
Gibert, AZ 8523	3			Analyzed:	2/28/2010
				Reported:	3/2/2010
G	Bas An	alyeis by Chro	matography - ASTM C	1945/D 3688	
A				Leb No.:	106233-10
Location: Pi	UNI Cas	AA		Sampia Time:	
Description: K		-09, K-10	K-11, K-13	Bampia Type:	
Companant		Mote %	Weight %	Orticf	
Oxygen		ND	0.00:		
		0.24	0.34		
Nitrogan		2.39	5.39		
Carbon Dioxide		ND ND	0.00		
Hydrogen Geeben Manneld	-	ND	6.00		
Carbon Monoxid			0.00		
Hydrogen Suliid	Ð	ND			
Methane		85.38	70.22		
Ethana		5.84	9.01		
Propens		4,99	11.28	1.377	
no-Sutana		0.42	1.25	D.13B	
n Butana		0.52	1.55	C.164	
iso-Pantane		0.11	0.41	C.040	
n-Pentene		0.05	0.18	C.C18	
Heightes Plus		0.08	0.35	C.033	
Totals		100.00	100.00	1.771	
Spacific Voluma, N	3780	19.48	Values Corrected		
Compressibility (2) P	ector	0.9971	for Compressibility	CHONS	Weight *
Spacific Gravity, Co	ioursiad	0.6733	0.6750	Carbon	73:56
				Hydrogen	22.16
GROSS		\mathbf{N}		Oxygen	3.92
	ry.	Y 1131.9	1135.2	Narogan	0.34
	101.	1112.1	1115.3	Sulfer	0.00
	ity	22023.1	22087.8		
	- 1 Vel	21637.7	21701 1	F FACTOR Q	V 865
NET				ST GALL F CALLENNER"U	
	irv	1024.0	1027.0		
	16 k	1006.1	1009.0	P FACTOR	853
-	irv	19924.4	19982.8	. 64 Sty F, Sternautrit	
	76k	18575.8	19633.1		
K	ydrogen 8	uitos, ppm	Nol Tested	Nacion	GCFF
	otal Sulfu		0 32	Mathe	GC/FP
0	aw Point,	dag F	Nel Taxted	Hecod	Burnau of Miner
		+120IMMCF	Not Testad	Reliea	Burnin of Mine:
VD ANS DAUGH				71 Trico	

58

Email pgrach@earthink.net

4100 Burn Street. PC: Box 80847 Bakensfield, CA 93380-0847

Telephone (661) 324-1317 Fex (661) 324-2746

Environmental Services & Teating P.O. Box 2526	Songes Submitted	8/2/2011
Gilben, AZ 85223	Stannora DesylanA	5/8/2011 0/3/2011
	Reported	6/8/2011

Company: Location: Osscription:	Oxy Fua Gas K-10			Lat No. Bainpla Time Stenplo Type	:
Component		Mole 4	Weight %	G/KOF	- 14.5 - 15.5 - 15.5 - 15.5 - 15.5 - 15.5 - 15.5 - 15.5 - 15.5 - 15.5 - 15.5 - 15.5 - 15.5 - 15.5 - 15.5 - 15.5
Oxygen		NO	0.00		
Nitrogan		0.79	1.14		
Cerbon Dio	dite	1,98	4.47		
Hydrogen		ND	0.00		
Carbon Mon	oxida	ND	0.00		
rtydrogen Si	ulfide	ND	0.00		
Nelhane		84 23	69.37		
Elhane		7.24	11.17		
Propane		4.91	11.11	1,355	
so-Butane		0.22	0.68	0 072	
r-Gutane		C 39	1.18	0.123	
so-Pentana		0.07	0.26	0.028	
n-Pentane		0.13	0.48	0.047	
Hexanss Plu	6	0.04	0.18	0.015	
l'otals		100.00	100.00	1.640	
ipocifici Voluma	4346	° <u>9</u> 48	Values Corrected		
comprenentially (C Factor	0.9971	for Compressibility	CHONS	Weight ?
pucific Gravity	Calculated	0.6726	C.6743	Domon	73,43
				lygragon	22 18
ROSS				Dxygen	3,262
870/63	Ory	1132.2	1135.5	Vitro0sin	1 130
	Wet	1112.4	1115.6	Saller	0.000
BTUAS	Эгү	22052.8	22117.0		
BTURE	Mot	21866.8	21729.9	F FACTOR @	8670
EY				AR GRYP destration	
o-lan	Diy	1024.3	1027.3		
A. 1. 11	Wat	1006.4	1002.3	F FACTOR I	8540
8°1,5%	Dry	19952.4	20010.5	20 Gap F decembration	
910/2	Wei	19603.3	19660.4		
	Hydrogen Sulfi	de, pom	No: Tannd	shares.	GC/FPD
	Total Sufer, op	in the second	0.27	NUSSI	GC/FPD
	New Point, dag	F	Nut fested	Ne:Ac-	Bureat of Mines
	Moisiure lus h	2D/MMCF	10: LB6:40	Matrici	Bureau of Minoa

Appendix I

Engine K-10 (S-2234-28) Summary of Historical Actual Emissions and Gas Compressor Fugitive VOC Emissions during Baseline Period

S-2234-28-8 Criteria Pollutant Monthly Calculations Engine: K-10

2010	Fuel Use	Heating	BSFC		1	b/month		
2010	MMCF	Value	BTU/BHP*HR	NOx	VOC	со	SOx	PM10
January	4.12	1,131.90	7,287.95	1,534.62	1,571.02	1,291.19	0.92	46.55
February	8.93	1,131.90	7,287.95	3,327.25	3,406.17	2,799.46	1.99	100.94
March	14.30	1,131.90	7,287.95	5,328.38	5,454.75	4,483.15	3.18	161.64
April	4.25	1,131.90	7,287.95	1,583.17	1,620.72	1,332.04	0.95	48.03
May	8.73	1,131.90	7,287.95	3,254.70	3,331.89	2,738.42	1.94	98.74
June	14.21	1,131.90	7,287.95	5,294.95	5,420.53	4,455.03	3.16	160.63
July	14.44	1,131.90	7,287.95	5,380.95	5,508.57	4,527.39	3.21	163.24
August	13.77	1,131.90	7,287.95	5,129.39	5,251.04	4,315.73	3.06	155.61
September	13.88	1,131.90	7,287.95	5,172.84	5,295.52	4,352.29	3.09	156.92
October	14.73	1,131.90	7,287.95	5,487.04	5,617.18	4,616.65	3.28	166.46
November	14.81	1,131.90	7,287.95	5,519.76	5,650.67	4,644.18	3.30	167.45
December	9.40	1,131.90	7,287.95	3,501.76	3,584.81	2,946.29	2.09	106.23
Total	135.56	-	-	50,514.82	51,712.87	42,501.82	30.17	1,532.42

2011	Fuel Use	Heating	BSFC		l	b/month		
2011	MMCF	Value	BTU/BHP*HR	NOx	VOC	со	SOx	PM10
January	12.42	1,132.20	6,466.29	181.53	67.27	1,699.89	2.17	140.42
February	7.19	1,132.20	6,466.29	105.15	38.96	984.64	1.26	81.34
March	9.67	1,132.20	6,466.29	141.38	52.39	1,323.91	1.69	109.37
April	2.83	1,132.20	6,466.29	41.36	15.33	387.30	0.49	31.99
Мау	0.00	1,132.20	6,466.29	0.00	0.00	0.00	0.00	0.00
June	3.22	1,132.20	6,466.29	47.13	17.46	441.34	0.56	36.46
July	9.87	1,132.20	6,466.29	144.20	53.44	1,350.39	1.72	111.55
August	12.98	1,132.20	6,466.29	189.71	70.30	1,776.55	2.26	146.76
September	12.35	1,132.20	6,466.29	180.45	66.87	1,689.83	2.15	139.59
October	11.19	1,132.20	6,466.29	163.58	60.62	1,531.83	1.95	126.54
November	14.90	1,132.20	6,466.29	217.76	80.70	2,039.23	2.60	168.46
December	14.17	1,132.20	6,466.29	207.08	76.74	1,939.16	2.47	160.19
Total	110.78	-	-	1,619.32	600.08	15,164.09	19.33	1,252.67

2010 Criteria Pollutant Quarterly Emissions S-2234-28-8

			2010				QTR	Average (Ib/Q	TR)	
	NOx	VOC	CO	SOx	PM10	NOx	VOC	co	SOx	PM10
January	1,534.62	1,571.02	1,291.19	0.92	46.55					
February	3,327.25	3,406.17	2,799.46	1.99	100.94	10,190.25	10,431.93	8,573.80	6.09	309.13
March	5,328.38	5,454.75	4,483.15	3.18	161.64					
April	1,583.17	1,620.72	1,332.04	0.95	48.03					Γ
May	3,254.70	3,331.89	2,738.42	1.94	98.74	10,132.83	10,373.15	8,525.49	6.05	307.39
June	5,294.95	5,420.53	4,455.03	3.16	160.63					
July	5,380.95	5,508.57	4,527.39	3.21	163.24					
August	5,129.39	5,251.04	4,315.73	3.06	155.61	15,683.18	16,055.14	13,195.41	9.37	475.77
September	5,172.84	5,295.52	4,352.29	3.09	156.92					
October	5,487.04	5,617.18	4,616.65	3.28	166.46					
November	5,519.76	5,650.67	4,644.18	3.30	167.45	14,508.56	14,852.66	12,207.12	8.67	440.13
December	3,501.76	3,584.81	2,946.29	2.09	106.23					l
Total	50,514.82	51,712.87	42,501.82	30.17	1,532.42	50,514.82	51,712.87	42,501.82	30.17	1,532.42

2011 Criteria Pollutant Quarterly Emissions

S-2234-28-8

	<u></u>		2011				QTR	Average (Ib/Q	TR)	
	NOx	VOC	CO	SOx	PM10	NOx	VOC	со	SOx	PM10
January	181.53	67.27	1,699.89	2.17	140.42					
February	105.15	38.96	984.64	1.26	81.34	428.05	158.62	4,008.45	5.11	331.13
March	141.38	52.39	1,323.91	1.69	109.37					
April	41.36	15.33	387.30	0.49	31.99					
May	0.00	0.00	0.00	0.00	0.00	88.49	32.79	828.64	1.06	68.45
June	47.13	17.46	441.34	0.56	36.46					
July	144.20	53,44	1,350.39	1.72	111.55					
August	189.71	70.30	1,776.55	2.26	146.76	514.36	190.61	4,816.77	6.14	397.90
September	180.45	66.87	1,689.83	2.15	139.59					
October	163.58	60.62	1,531.83	1.95	126.54					
November	217.76	80.70	2,039.23	2.60	168.46	588.42	218.05	5,510.23	7.02	455.19
December	207.08	76.74	1,939.16	2.47	160.19					
Total	1,619.32	600.08	15,164.09	19.33	1,252.67	1,619.32	600.08	15,164.09	19.33	1,252.67

Two Year Criteria Pollutant Average Quarterly Emissions S-2234-28-8

		2 Year	Average (Ib/n	nonth)			QTR 2	yr Average (ib)	(QTR)	
	NOx	VOC	CO	SOx	PM10	NOx	voc	со	SOx	PM10
January	858.07	819.14	1,4 9 5.54	1.54	93.49					
February	1,716.20	1,722.57	1,892.05	1.62	91.14	5,309.15	5,295.28	6,291.13	5.60	320.13
March	2,734.88	2,753.57	2,903.53	2.44	135.50					
April	812.27	818.02	859.67	0.72	40.01					
May	1,627.35	1,665.95	1,369.21	0.97	49.37	5,110.66	5,202.97	4,677.07	3.55	187.92
June	2,671.04	2,719.00	2,448.19	1.86	98.54					
July	2,762.58	2,781.01	2, 9 38.89	2.47	137.39					
August	2,659.55	2,660.67	3,046.14	2.66	151.18	8,098.77	8,122.87	9,006.09	7.75	436.83
September	2,676.64	2,681.20	3,021.06	2.62	148.26	·				
October	2,825.31	2,838.90	3,074.24	2.62	146.50					
November	2,868.76	2,865.68	3,341.71	2.95	167.95	7,548.49	7,535.36	8,858.67	7.85	447.66
December	1,854.42	1,830.77	2,442.72	2.28	133.21					
Total	26,067.07	26,156.47	28,832.95	24.75	1,392.54	26,067.07	26,156.47	28,832.95	24.75	1,392.54

Occidental of Elk Hills

S-1133368, S-2234-28

Fugitive Emissions Using Screening Emission Factors

California Implementation Guidelines for Estimating Mass Emissions of Fugitive Hydrocarbon Leaks at Petroleum Facilities Table IV-2c. Oil and Gas Production Screening Value Ranges Emission Factors

Percentage of components with	0 %
Weight percentage of VOC in the total organic compounds in gas (neglect non-organics)?	26.44 %
Weight percentage of VOC in the total organic compounds in oil (neglect non-organics)?	100 %

			Total allowable	Screening Val	ue EF - TOC	VOC
Equipment		Component	leaking	< 10,000 ppmv	≥ 10,000 ppmv	emissions
Туре	Service	Count	components	(lb/day/source)	(lb/day/source)	(lb/day)
Valves	Gas/Light Liquid	22	0	1.852E-03	7.333E+00	0.01
	Light Crude Oil	4	0	1.005E-03	3.741E+00	0.00
	Heavy Crude Oil	0	0	7.408E-04	N/A*	0.00
Pump Seals	Gas/Light Liquid	0	0	5.270E-02	4.709E+00	0.00
	Light Crude Oil	0	0	1.402E-02	4.709E+00	0.00
	Heavy Crude Oil	0	0	N/A	N/A	N/A
Others	Gas/Light Liquid	0	0	7.778E-03	7.281E+00	0.00
	Light Crude Oil	0	0	6.931E-03	3.757E-01	0.00
	Heavy Crude Oil	0	0	3.016E-03	N/A*	0.00
Connectors	Gas/Light Liquid	154	0	6.349E-04	1.370E+00	0.03
	Light Crude Oil	40	0	5.291E-04	1.238E+00	0.02
	Heavy Crude Oil	0	0	4.233E-04	4.233E-04	0.00
Flanges	Gas/Light Liquid	46	0	1.482E-03	3.228E+00	0.02
-	Light Crude Oil	6	0	1.270E-03	1.376E+01	0.01
	Heavy Crude Oil	0	0	1.217E-03	N/A*	0.00
Open-ended	Gas/Light Liquid	0	0	1.270E-03	2.905E+00	0.00
Lines	Light Crude Oil	0	0	9.524E-04	1.175E+00	0.00
	Heavy Crude Oil	0	0	7.937E-04	3.762E+00	0.00

* Emission factor not available. All components from equipment type and service will be assessed as < 10,000 ppmv

Total VOC Emissions =

0.1 lb/day

Appendix J

Engine R-25 (S-2234-127) Summary of Source Test Results and Fuel Analysis during Baseline Period

Engine R25 March 16, 2010 Sumary of Source Test Results

Test	Engine	Engine	Fuel Rate	Heat Input	F-Factor (60F)	Excess	Calculated	Engine	BSFC
Date	ĪD	PTO	MCFD	MMBtu/Hr	SDCF/MMBtu	O2 %	BHP*Hr	Load	Btu/Bhp*hr
03/16/10	R25	S-2234-127	204.00	9.0823	8,647.00	0.19	1,250.26	0.6817	7,264.29
03/16/10	R25	S-2234-127	208.00	9.2603	8,647.00	0.13	1,274.78	0.6951	7,264.29
03/16/10	R25	S-2234-127	209.00	9.3049	8,647.00	0.13	1,280.90	0.6984	7,264.29
Test Averag	е		207.00	9.2158	8,647.00	0.15	1,268.65	0.6917	7,264.29

Test	Engine		Criterera Pol	lutants (ppmv		GHG (@15% O2)			
Date	ID [NOx	VOC	CO	SOx	PM10	CH4 ppmv	CO2 %	N2O
03/16/10	R25	1.24	0.00	8.56	0.05		26.49	3.06	
03/16/10	R25	0.98	0.00	4.60	0.05		25.57	3.06	
03/16/10	R25	1.67	0.00	3.10	0.05		29.26	3.06	
Test Average	e	1.30	0.00	5.42	0.05		27.11	3.06	

Test	Engine		Process Em	ission Factors	(g/Bhp*Hr)		CH4	CO2	N2O
Date	ID	NOx	VOC	CO	SOx	PM10	g/MMBtu	Kg/MMBtu	g/MMBtu
03/16/10	R25	0.0152	0.0000	0.0637	0.0008	0.0640	15.5040	49.2030	0.1000
03/16/10	R25	0.0120	0.0000	0.0342	0.0008	0.0640	14.9605	49.1869	0.1000
03/16/10	R25	0.0204	0.0000	0.0231	0.0008	0.0640	17.1215	49.1869	0.1000
Test Averag	е	0.0159	0.0000	0.0404	0.0008	0.0640	15.8620	49.1923	0.1000

Engine R25 March 10, 2010 Sumary of Source Test Results

Test	Engine	Engine	Fuel Rate	Heat Input	F-Factor (60F)	Excess	Calculated	Engine	BSFC
Date	ID	PTO	MCFD	MMBtu/Hr	SDCF/MMBtu	O2 %	BHP*Hr	Load	Btu/Bhp*hr
03/10/11	R25	S-2234-127	172.00	7.7637	8,653.00	0.09	1,068.74	0.5827	7,264.29
03/10/11	R25	S-2234-127	172.00	7.7637	8,653.00	0.08	1,068.74	0.5827	7,264.29
03/10/11	R25	S-2234-127	172.00	7.7637	8,653.00	0.08	1,068.74	0.5827	7,264.29
Test Averag	e		172.00	7.7637	8,653.00	0.08	1,068.74	0.5827	7,264.29

Test	Engine		Criterera Pol	lutants (ppmv)	@15% O2)		GHG (@15% O2)			
Date	ID	NOx	VOC	co	SOx	PM10	CH4 ppmv	CO2 %	N2O	
03/10/11	R25	1.25	0.00	8.05	0.06		52.16	3.00		
03/10/11	R25	1.63	0.00	3.87	0.06		25.79	3.00		
03/10/11	R25	1.54	0.00	5.05	0.06		22.95	3.00		
Test Averag	e	1.47	0.00	5.66	0.06		33.64	3.00		

Test	Engine		Process Emis	sion Factors (g/Bhp*Hr)		CH4	CO2	N2O
Date	ID	NOx	VOC	CO	SOx	PM10	Kg/MMBtu	Kg/MMBtu	Kg/MMBtu
03/10/11	R25	0.0153	0.0000	0.0600	0.0010	0.0640	30.5454	48.4023	0.1000
03/10/11	R25	0.0200	0.0000	0.0288	0.0010	0.0640	15.1031	48.3796	0.1000
03/10/11	R25	0.0188	0.0000	0.0376	0.0010	0.0640	13.4415	48.3727	0.1000
Test Averag	e	0.0180	0.0000	0.0421	0.0010	0.0640	19.6967	48.3849	0.1000

S-2234-127-2 Fuel Analysis

•. f

E-meil pgtach@earthlink.net

4100 Burr Street P.O. Box 80847 Bakersfield, CA 93380-0847 Telephone (661) 324-1317 Fax (861) 324-2746

Environmental Services & Testing P.O. Box 2523		.Sampled Submaled	3/11/2010 3/12/2010
Giben. AZ 85233	•	Anslyzed Reportso:	M15/2910 3/17/2010

Company: Locations Descriptions	Oxy Fuel Gas R-28		Chromolography - AS	Leb No.: Samplo Time: Samplo Type:	100313-4	
Component		Meis K	Weight %	GRACP		
Oxygen		ND	0.00			
Nivogan		0.48	0.72			
Carbon Diox	da.	1.61	3.93			
Hydrogan	00	ND	0.00		•	
Carbon Mon	and a	ND	0.00			
Hvd:cogen Su		ND	0.00			
Mathane		90.10	80.21			
Ethane		5.73	5.55			
Еслано Ргорела		1.62	3.98	0,447		
iso-Butane		0.18	0.58	0.059		
n-Butare		0.23	C.74	0.073		
iso-Pentene		0.03	0:12	0.011		
		0.02	0.08	0.007		
n-Pentana 0.02 Nexanas Pius 0.02		0.10	0.008			
Totela	•	100.00	100.00	0.605		
		. 21.08	Values Corrected			
Spacine Volunie Compressibility (0.9975	for CompressionBy	CHONS	Weight %	
Specia Gravity.	Criculated	0.6222	0 6235	Cernsn	73.342	
				Hydrogen	23.084	
GROSS		\mathbf{N}		Oxygen	2.859	
BTURN	Drv	Y1088.5	1071 1	Nilogen	0.715	
	Wat	1049.6	1052.4	Sugar	0.000	
BIUAD	Dry	22498.9	22554.6		1.	
BTUAD	Wat	22105.2	22159.9	P FACTOR	V 8647	
NEV				18 cog #, 060/80/810		
BILIAS	Dry	964,7	987 1		•	
	Wat	947.8	950.1	F FACTOR O	8517	
BTUAL	Ũry	20313.1	20363.3	NO erg F, OKINNEDI		
STLKP	Wet	19957.6	20007.0			
	Hydrogen 6	uños, ppm	Not Tested	Alethod	GC/FPD	
	Total Bullur,		0.13	ANDROS	ASTN 03246	
	Dew Port,	••	Not Tesind	aleboc	Bureau of Mines	
		-	Not Tested	ANS/ YOU'	Bureau of Minda	

. 53

E-meil pgtoch@earchlink.nec.

4 100. Burr Street P.O. Box 80847 Bekensfield, CA 93380-0847

1

Telephone (661) 324-1317 Fex (661) 324-2743

		e & Testing		Semplod:	S/6/2011
P.O Box 26				Sucmitted	3/11/2011
Gilbert, AZ (86233			Analysed	3/14/2011
				Reponed:	3/16/2011
	G	sae Analysis:by	Chromotography - AS	TM D 3688-91	
Сларануз	Οxγ		an na sa an	Les No :	110326-4
Location:	Fuel Ges	0.0.7		Sample Time:	
Description:	R-26	R-25		Eample Typo:	
Component		tiole %	White phat 75	G/HCP	
Oxygen		ND	3.00		
Nitrogen		0.37	0.56		
Carbon Dis	elda.	1.88	4.45		
Hydregen		NC	0:00		
Carbon Mor	noxide	ND	0.00		
Hydroden S		ND			
Methane		69.06	77.71		
Ethane		5.42	6.85		
Propene		2.75	8.59	0.758	
so-Butene		0.15	0.47	0.049	
า-ยินเตกต		0.30	0,95	0.095	
en Paniana		0.05	0.20	0.018	
o-Pantana		0.03	0.12	0.011	
Hexanes Pl	26	0.02	0.09	· 0.008	
Totals		100.00	100.00	0.940	
Specific Volum	a. 63/07	20.64	Values Corrected	,	
Comptessibility		0.9974	for Compressellity	CHONS	Weight %
Specife Gravity	Celestated	0.6346	0:6332	Carbon	73.37
opecie Giavoj	, ecremente	4.54.14	0,0312	Hydrogen	22:83
âross		<u>ر</u>		Oxygon	3:23
eturn	0N	1083.3	1085.1	Nanogen	0.56
CI I MITTA	Wet	1084.3	1087.1	SEEUT	0.00
ATU/b	Div	22358.2	22415.9		1
87U/10	W61	21987.0	22023.8	F FACTOR R	₩ 885
NET				61 000 F. ca: 646811	
BTUAS	0ry	978.5	981.1		
Q 1 30 1 40	Wei	981.4	983.9	F PACTOR &	852
91L/b	DN	20186.4	20246.5	67 deg P. dust VVStU	
OTU:	Wet	19843.0	18894.1		
	Hydrógen	Suildo, prim	Not Texad	iteired	GCFP
	Tetal Susi	w, ppm	V 0.1e	Horned	ASTV DOON
	Data Pol t	1, dog F	flot Tested	487769	Burney of Mnoi
	Moissure	ing H20/MMCF	Hot Tested	Nutical	Burbbu of Minas
in in se Subschei				tr Time	

48

Appendix K

Engine R-25 (S-2234-127) Summary of Historical Actual Emissions and Gas Compressor Fugitive VOC Emissions during Baseline Period

S-2234-127 Criteria Pollutant Monthly Calculations Engine: R-25

2010	Fuel Use	Heating	BSFC	· · · · · · · · · · · · · · · · · · ·	1	b/month		
2010	MMCF	Value	BTU/BHP*HR	NOx	VOC	СО	SOx	PM10
January	2.39	1,068.50	7,264.29	12.27	0.00	31.21	0.61	49.46
February	4.23	1,068.50	7,264.29	21.76	0.00	55.35	1.08	87.73
March	5.83	1,068.50	7,264.29	30.00	0.00	76.32	1.49	120.97
April	5.63	1,068.50	7,264.29	28.98	0.00	73.73	1.44	116.87
May	5.54	1,068.50	7,264.29	28.48	0.00	72.46	1.41	114.85
June	5.19	1,068.50	7,264.29	26.68	0.00	67.87	1.32	107.58
July	4.51	1,068.50	7,264.29	23.19	0.00	59.00	1.15	93.52
August	3.04	1,068.50	7,264.29	15.62	0.00	39.74	0.78	62.99
September	3.72	1,068.50	7,264.29	19.11	0.00	48.61	0.95	77.05
October	4.07	1,068.50	7,264.29	20.94	0.00	53.27	1.04	84.44
November	3.31	1,068.50	7,264.29	17.02	0.00	43.30	0.84	68.63
December	2.54	1,068.50	7,264.29	13.05	0.00	33.20	0.65	52.62
Total	49.99	-		257.07	0.00	654.07	12.77	1,036.71

2011	Fuel Use	Heating	BSFC			b/month		
2011	MMCF	Value	BTU/BHP*HR	NOx	VOC	со	SOx	PM10
January	4.80	1,083.30	7,264.29	28.43	0.00	66.45	1.52	100.85
February	3.84	1,083.30	7,264.29	22.77	0.00	53.21	1.22	80.75
March	3.27	1,083.30	7,264.29	19.41	0.00	45.36	1.04	68.85
April	3.28	1,083.30	7,264.29	19.45	0.00	45.45	1.04	68.97
Мау	5.21	1,083.30	7,264.29	30.88	0.00	72.18	1.66	109.54
June	5.23	1,083.30	7,264.29	31.01	0.00	72.47	1.66	109.98
July	4.66	1,083.30	7,264.29	27.63	0.00	64.56	1.48	97.99
August	5.27	1,083.30	7,264.29	31.24	0.00	73.00	1.67	110.78
September	4.86	1,083.30	7,264.29	28.81	0.00	67.33	1.54	102.19
October	4.97	1,083.30	7,264.29	29.47	0.00	68.87	1.58	104.52
November	4.08	1,083.30	7,264.29	24.17	0.00	56.49	1.30	85.74
December	5.24	1,083.30	7,264.29	31.07	0.00	72.61	1.67	110.19
4	54.71	-	-	324.34	0.00	757.98	17.39	1,150.34

2010 Criteria Pollutant Quarterly Emissions S-2234-127-1

	2010						QTR Average (Ib/QTR)			
	NOx	VOC	со	SOx	PM10	NOx	VOC	CO	SOx	PM10
January	12.27	0.00	31.21	0.61	49.46					
February	21.76	0.00	55.35	1.08	87.73	64.02	0.00	162.88	3.18	258.17
March	30.00	0.00	76.32	1.49	120.97					
April	28.98	0.00	73.73	1.44	116.87					
May	28.48	0.00	72.46	1.41	114.85	84.13	0.00	214.06	4.18	339.29
June	26.68	0.00	67.87	1.32	107.58					
July	23.19	0.00	59.00	1.15	93.52					
August	15.62	0.00	39.74	0.78	62.99	57.92	0.00	147.36	2.88	233.56
September	19.11	0.00	48.61	0.95	77.05					
October	20.94	0.00	53.27	1.04	84.44			1		T
November	17.02	0.00	43.30	0.84	68.63	51.00	0.00	129.77	2.53	205.69
December	13.05	0.00	33.20	0.65	52.62					
Total	257.07	0.00	654.07	1 2.77	1,036.71	257.07	0.00	654.07	12.77	1,036.71

2011 Criteria Pollutant Quarterly Emissions S-2234-127-1

	2011						QTR Average (Ib/QTR)			
	NOx	VOC	CO	SOx	PM10	NOx	voc	CO	SOx	PM10
January	28.43	0.00	66.45	1.52	100.85			1		
February	22.77	0.00	53.21	1.22	80.75	70.61	0.00	165.02	3.79	250.44
March	19.41	0.00	45.36	1.04	68.85					
April	19.45	0.00	45.45	1.04	68.97			1		ſ
May	30.88	0.00	72.18	1.66	109.54	81.34	0.00	190.09	4.36	288.49
June	31.01	0.00	72.47	1.66	109.98					
July	27.63	0.00	64.56	1.48	97.99			I		
August	31.24	0.00	73.00	1.67	110.78	87.67	0.00	204.89	4.70	310.96
September	28.81	0.00	67.33	1.54	102.19					
October	29.47	0.00	68.87	1.58	104.52					T
November	24.17	0.00	56.49	1.30	85.74	84.71	0.00	197.97	4.54	300.45
December	31.07	0.00	72.61	1.67	110.19					
Total	324.34	0.00	757.98	17.39	1,150.34	324.34	0.00	757.98	17.39	1,150.34

Two Year Criteria Pollutant Average Quarterly Emissions S-2234-127-1

	2 Year Average (lb/month)						QTR 2yr Average (Ib/QTR)				
	NOx	VOC	CO	SOx	PM10	NOx	VOC	CO	SOx	PM10	
January	20.35	0.00	48.83	1.07	75.16					· · ·	
February	22.26	0.00	54.28	1.15	84.24	67.31	0.00	163.95	3.48	254.30	
March	24.70	0.00	60.84	1.27	94.91						
April	24.21	0.00	59.59	1.24	92.92						
May	29.68	0.00	72.32	1.53	112.19	82.74	0.00	202.08	4.27	313.89	
June	28.84	0.00	70.17	1.49	108.78						
July	25.41	0.00	61.78	1.32	95.76						
August	23.43	0.00	56.37	1.23	86.89	72.79	0.00	176.13	3.79	272.26	
September	23.96	0.00	57.97	1.25	89.62						
October	25.20	0.00	61.07	1.31	94.48						
November	20.60	0.00	49.89	1.07	77.18	67.86	0.00	163.87	3.54	253.07	
December	22.06	0.00	52.90	1.16	81.41						
Total	290.70	0.00	706.02	15.08	1,093.53	290.70	0.00	706.02	15.08	1,093.53	

.

.

Occidental of Elk Hills

S-1133368, S-2234-127

Fugitive Emissions Using Screening Emission Factors

California Implementation Guidelines for Estimating Mass Emissions of Fugitive Hydrocarbon Leaks at Petroleum Facilities Table IV-2c. Oil and Gas Production Screening Value Ranges Emission Factors

Percentage of components with	0 %
Weight percentage of VOC in the total organic compounds in gas (neglect non-organics)?	26.44 %
Weight percentage of VOC in the total organic compounds in oil (neglect non-organics)?	100 %

			Total allowable	Screening Val	úe EF - TOC	VOC
Equipment		Component	leaking	< 10,000 ppmv	≥ 10,000 ppmv	emissions
Туре	Service	Count	components	(lb/day/source)	(lb/day/source)	(lb/day)
Valves	Gas/Light Liquid	10	0	1.852E-03	7.333E+00	0.00
	Light Crude Oil	40	0	1.005E-03	3.741E+00	0.04
	Heavy Crude Oil	0	0	7.408E-04	N/A*	0.00
Pump Seals	Gas/Light Liquid	0	0	5.270E-02	4.709E+00	0.00
·	Light Crude Oil	0	0	1.402E-02	4.709E+00	0.00
	Heavy Crude Oil	0	0	N/A	N/A	N/A
Others	Gas/Light Liquid	2	0	7.778E-03	7.281E+00	0.00
	Light Crude Oil	1	0	6.931E-03	3.757E-01	0.01
	Heavy Crude Oil	0	0	3.016E-03	N/A*	0.00
Connectors	Gas/Light Liquid	198	0	6.349E-04	1.370E+00	0.03
	Light Crude Oil	201	0	5.291E-04	1.238E+00	0.11
	Heavy Crude Oil	0	0	4.233E-04	4.233E-04	
Flanges	Gas/Light Liquid	135	0	1.482E-03	3.228E+00	0.05
-	Light Crude Oil	85	0	1.270E-03	1.376E+01	0.11
	Heavy Crude Oil	0	0	1.217E-03	N/A*	0.00
Open-ended	Gas/Light Liquid	0	0	1.270E-03	2.905E+00	0.00
Lines	Light Crude Oil	0	0	9.524E-04	1.175E+00	0.00
	Heavy Crude Oil	0	0	7.937E-04	3.762E+00	0.00

* Emission factor not available. All components from equipment type and service will be assessed as < 10,000 ppmv

Total VOC Emissions = 0.4

0.4 lb/day