## JUN 262014

## Gregory Pritchett

Chevron USA Inc
PO Box 1392
Bakersfield, CA 93302

## Re: Notice of Preliminary Decision - Authority to Construct <br> Facility Number: C-2872 <br> Project Number: C-1141400

## Dear Mr. Pritchett:

Enclosed for your review and comment is the District's analysis of Chevron USA Inc's application for an Authority to Construct for the replacement five crude oil storage tanks with new tanks, authorization of an existing loading rack, and installation of a new flare, at the 7F Oil Cleaning Plant within the light oil production stationary source, Fresno County.

The notice of preliminary decision for this project will be published approximately three days from the date of this letter. After addressing all comments made during the 30day public notice period, the District intends to issue the Authority to Construct. Please submit your written comments on this project within the 30-day public comment period, as specified in the enclosed public notice.

Thank you for your cooperation in this matter. If you have any questions regarding this matter, please contact Mr. Richard Edgehill of Permit Services at (661) 392-5617.

Sincerely,

Arnaud Marjollet


Director of Permit Services
AM:rue/ya

## Enclosures

cc: Mike Tollstrup, CARB (w/ enclosure) via email

JUN 262014
Gregory Pritchett
Chevron USA inc
PO Box 1392
Bakersfield, CA 93302

## Re: Notice of Preliminary Decision - Authority to Construct Facility Number: C-2872 <br> Project Number: C-1141400

## Dear Mr. Pritchett:

Enclosed for your review and comment is the District's analysis of Chevron USA Inc's application for an Authority to Construct for the replacement five crude oil storage tanks with new tanks, authorization of an existing loading rack, and installation of a new flare, at the 7F Oil Cleaning Plant within the light oll production stationary source, Fresno County.

The notice of preliminary decision for this project will be published approximately three days from the date of this letter. After addressing all comments made during the $30-$ day public notice period, the District intends to issue the Authority to Construct. Please submit your witten comments on this project within the 30 -day public comment period, as specified in the enclosed public notice.

Thank you for your cooperation in this matter. If you have any questions regarding this matter, please contact Mr. Richard Edgehill of Permit Services at (661) 392-5617.

Sincerely,

Arnaud Marjollet Director of Permit Services

AM:rue/ya

## Enclosures

cc: Mike Tollstrup, CARB (w/ enclosure) via email

## San Joaquin Valley Air Pollution Control District Authority to Construct Application Review

Two crude oll processing tanks, wastewater tank, 3 phase separator, and truck loading operation - all vented to vapor control (flare or DOGGR disposal wells)

| Facility Name: | Chevron USA Inc. | Date: June 20, 2014 |
| ---: | :--- | ---: | :--- |
| Mailing Address: | P.O. Box 1392 | Engineer: Richard Edgehill |
|  | Bakersfield, CA 93302 | Lead Engineer: Dan Klevann |

## I. Proposal

CUSA has requested Authorities to Construct (ATC) permit for the installation of one (up to) 1000 bbl crude oil storage tank and vapor control system including an electric compressor (C-2872-64), one (up to) 1000 bbl crude oil drain tank (C-2872-65), one horizontal 3 Phase Separator (C-2872-66), and one (up 10) 1000 bbl crude oil wash tank (C-2872-67). The tanks will replace five (5) existing crude oil tanks (C-2872-1 through ' -4 , and ' -7 ). An existing LAC' ${ }^{\prime}$ unit will be listed on C-2872-64. An existing truck load out operation (loading rack and pumps) will permitted separately as ATC C-2872-68-1. Additionally, in this project a flare is added as an additional disposal option for produced gas and tank vapor recovery (TVR) gas in addition to DOGGR-disposai wells.

The ATCs in this project cancel and replace ATCs issued in project C-2872, 1133078 (ATCs '-64-0 through '-68-0) which authorized' the same equipnent but without the flare.

The project triggers BACT, offsets and public notice.
CUSA facility C-2872 is a District Rule 2530 Major Source but does not have a Title V PTO.
ATCs C-2872-64-0 through ' $-68-0$ and PTOs C-2872-1-1 through '-4-1 and '-7-1 (to be cancelled) are included in Attachment I.

Chevron facility C -2872 does not currently hold a Title V permit and this project itself does not exceed the Title $V$ thresholds; therefore. Districi Rule 2520 is not applicable for this project.

## II. Applicable Rules

Rule 2201 New and Modified Stationary Source Review Rule (4/21/11)

Rule 2410 Prevention of Significant Deteriration ( $6 / 16 / 11$ )
Rule 2520 Federally Mandated Operating Permits ( $6 / 21 / 01$ ) not applicable - CUSA does not have a Title V permit for this source.
Rule 2530 Federally Enforceable Potential to Emilt (12/18/08)
Rule 4001 New Source Performance Standards, Subparts K, Ka, Kb - Standards of Performance for Storage Vessels for Volatile Organic Liquid ( $04 / 14 / 99$ ) not applicable - Product stored prior to custody transfer.
Rule 4102 Nuisance (12/17/92)
Rule 4311 Flares (6/18/09)
Rule 4409 Components at Light Crude Oil Production Facilities, Natural Gas Production Facilities, and Natural Gas Processing Facilities (4/20/2005)
Rule 4623 Storage of Organic Liquids (5/19/05)
Rule 4624 Organic Liquid Loading (12/17/1992)
CH\&SC 41700 Health Risk Assessment
CH\&SC 42301.6 School Notice
Public Resources Code 21000-21177: California Environmental Quality Act (CEOA)
California Code of Regulations, Title 14, Division 6, Chapter 3, Sections 15000-15387: CEQA Guidelines

## III. Project Location

The equipment within this project is permilted to operate in CUSA's Coalinga Nose Ollield (Section 7, Township 19S, Range 15E) within the Fresno County Light Oil stationary source. The equipment is not located within 1,000 feet of the outer boundary of a $\mathrm{K}-12$ schoo; therefore, the public notification requirement of California Health and Safety Code 42301.6 is not applicable to this project.

A location map is included in Attachment il.

## IV. Process Description

Stationary Source $\mathrm{C}-2872$ consists of the 7 F oil cleaning (OCP) plant which cleans and separates crude oil and water. The oil is dehydrated prior to sale.

Produced flulds from crude oil production wells are first processed in three phase separator $V$ 100 ( $\mathrm{C}-2872-66$ ). The vapor space of the separator is tied to the vapor collection and control system listed on tank C-2872-64-1. Oil from the three phase separator is piped to crude oil tank $\mathrm{T}-110$ (C-2872-64-1) and the water goes to waste water tank $\mathrm{T}-120$ ( $\mathrm{C}-2872-67-1$ ). Drain tank T-130 (C-2872-65-1) can receive liquids from any of the vessels (including drains from separator vessel $\mathrm{V}-100$ and LACT) and vapors are discharged to knock out drum V-140 listed on TVR system included with tank ATC C-2872-64-1. Any fiquids collected in the drain tank will be pumped to 3 phase separalor $\mathrm{C}-2872-66-1$ or waste water tank $\mathrm{C}-2872-67-1$. Crude oil storage tank $\mathrm{C}-2872-641$ is vented to knock out drum V -140 which then discharges to the flare C-2872-69 or DOGGR approved disposal wells. Oil from crude oil tank T-110 (C-2872-64-1) is sent to truck load out ATC C-2872-68-1, via the LACT unit included in the tank permif, and vapors displaced during truck foading are vented to TVR system listed on tank permit C . 2872-64-1 (via KO drum V-140).


Air assisted flare C-2872-69-0 will be used to incinerate TVR vapors from C-2872-64, truck load out vapors from C-2872-68, and produced gas from the three phase separator (C-287266) (6-3-12 email). The flare will use natural gas, propane, or LPG as pilol fuel. Upstream pressure to the flare will be $<5 \mathrm{psig}$ and therefore the requirements of 40 CFR 60.18 are applicable.

## V．Equipment Listing

| （Cance | original PTOs <br> \＆replaced by proposed project） | Previousily approved ATCs， <br> Replacing tanks－C－1133078 <br> （DOGGR wells only） |  | Proposed （DOGGR wells and flare option） |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} C-2872 \\ -1 \end{gathered}$ | 5000 日bl FR Clarifler tank T－300 | 64－0 | Up to 1，000 Bbl FR Crude tank $7 F I I$ with TVR system | 64－1 | Up to 1，000 8bl FR Crude Oll tank T－110 with LACT and TVR system serving C．2872－65，67，68 vented to flare or DOGGR wells |
| －2 | 5000 ebl FR Clarifjer tanki T－500 |  | ＜no replacement＞ |  | ＜no replacement＞ |
| －3 | 5000 Bbl FR Clarifler tank T－400 | 66－0 | Up to 300 bbi three phase separator 7FV1 | 66－1 | Up to 300 Bb three phase separator vessel $\mathrm{V} \cdot 100$ ，includes $\mathrm{K} / \mathrm{O}$ vessel v － 140 ，vented to flare or DOGGR wells |
| －4 | 5000 日bl FR Clarifler tank T－600 | 65－0 | Up to 1,000 Bbl FR Crude Drain tank 7FT2 | 65－1 | Up to 1,000 Bti FR Draln tank $\mathrm{T}+130$ ，wented to TVR system listed on C－2672－54 |
| －7 | 3000 Bbl Wash tank T－200 | 67－0 | Up to 1，000 Bbl FR Wash tank 7FT3 | 67－1 | Up to 1，000 BbI FR Waste Witer Tank T－120，vented to TVR system listed on C－2872－b4 |
|  | Truck Load out（No PTO） | 68－0 | Class 2 Truck load out | 68－1 | Glass 2 Truck load out vented to TVR system IIsted on C－2872－64 |
| －27 | 7－F TVR SYSTEM（This PTO was combined with PTO＇1 hl project（－1121111） |  |  | 69－0 | Flare serving three phase separator C－2872－66，TWR Ilsted on C－2872．64，and truek load out C－ 2872－68 |

## Pre－Prolect Equipment Description：

> C-2872-1-2: 5000 BBL FIXEPROOF GRUDE OHLTANK(\#T-300)-GOANEGTED-TO VAPOR-GOATROLSYSIEM SHARED WITH TANHS-C-2872-4 and C28727 (TO BE CANCELLED - includes components and equipment previously listed on $\mathrm{C}-2872-27$ (see District project $\mathrm{C}-1121111$ which combined the two permits)

## C－2872－2－2：5000－BBL－FIXED ROOF－GRUDEOH－TANK（\＃T－600）－GONAEGFED－FQ VAPORGONTROLSYSTEMLISTED ON PERAMT C－2872－（TO BE CANCELLED）

C－2872－3－2：5900－BELFPXEDROOF－GRUOE－OH－TAAK（\＃T－400）CONNEGTEDTO VAPOR－GOATROL SYSFEMLISTEDOA PERMIT－C－2872－4（TO BE CANCELLED）

## C－2872－4－2：3000－BBLFIXED－ROOF－GRUDEOH TANK－仁T－600）CONNECTED－TO $\forall A P O R G O N T P O L S Y S T E M-H S F E D-O N-P E R M I T G-28727$（TO BE CANCELLED）

C－2872－7．2： 3000 －BQLFMED－ROQF－GRUDE－OHLWASHTANK－HT－200－GONNEGFED－FO VAROR GONTROLSYSFEM LISTED－ONPEERMTC－2872－4（TO BE CANCELLED）

# C-2872-27-1: 55-BHR VAPOR RECOVERYSYSTEM-H67WITHA-40BHR"AC"ROTARYVANE GOMAPRESOR-AND -15-BHR-GORKIH-BAGYUP-GOMAPRESSOR-SERMIMG-7F OHLANATER TREATMENT FAGHITY (FANHZ\#GF-1, ORT-1, PT-1, AND-ST-1) (TO BE CANCELLED, equipment combined with C-2872-1 above) 

## Proposed Modifications:

C-2872-64-1: UP TO 1,000 BBL FIXED ROOF CRUDE OIL TANK T-110, INCLUDING
LACT UNIT WITH LIQUID PUMPS DISCHARGING TO TRUCK
LOADOUT LISTED ON PERMT C-2872-68, WITH VAPOR SPACE
VENTED TO TANK VAPOR RECOVERY (TVR) SYSTEM SHARED
WITH 3 PHASE SEPARATOR C-2872-66, TANKS C-2872-65 AND C-
2872-67, AND TRUCK LOADOUT C-2872-68, DISCHARGING
COLLECTED VAPORS THROUGH KNOCK OUT DRUM V140 TO
FLARE C-2872-69 ANDIOR DOGGR-APPROVED DISPOSAL WELLS

Note: Upon implementallon this ATC cancels ATC C-2872-64-0 and PTOs C-2872-1, 2, 3, 4 and 7

C-2872-65-1: UP TO 1,000 BBL FIXED ROOF CRUDE OIL DRAIN TANK T-130, VENTED TO TVR SYSTEM LISTED ON PERMIT C-2872-64

Note: This ATC shall be implemented concurrently with C-2872-64-1
C-2872-66-1: UP TO 300 BBL HORIZONTAL THREE PHASE SEPARATOR VESSEL V-100, VENTED TO TVR SYSTEM LISTED ON PERMIT C-2872-64

Note: This ATC shall be implemented concurrently with C-2872-64-1
C-2872-67-1: UP TO 1,000 BBL FIXED ROOF CRUDE OIL WASTE WATER TANK T120, VENTED TO TVR SYSTEM LISTED ON PERMIT C-2872-64

Note: This ATC shall be implemented concurrently with C-2872~64-1

## C-2872-68-1: CLASS 2 ORGANIC LIOUID TRUCK LOADING OPERATION WITH VAPOR RETURN PIPING TO TVR SYSTEM LISTED ON PERMIT C-2872-64

Note: This ATC shall be implemented concurrently with C-2872-64-1

## Post Project Equipment Description:

C-2872-64-1: UP TO 1,000 BBL FIXED ROOF CRUDE OIL TANK T-110, INCLUDING LACT UNIT WITH LIQUID PUMPS OISCHARGING TO TRUCK LOADOUT LISTED ON PERMIT C-2872-68, WITH VAPOR SPACE VENTED TO TANK VAFOR RECOVERY (TVR) SYSTEM SHARED WITH THREE PHASE SEPARATOR C-2872-66, TANKS C-2872-65 AND C-2872-67, AND TRUCK LOADOUT C-2872-68, DISCHARGING

COLLECTED VAPORS THROUGH KNOCK OUT DRUM V140 TO FLARE C-2872-69 ANDIOR DOGGR-APPROVED DISPOSAL WELLS

## C-2872-65-1: UP TO 1,000 BBL FIXED ROOF CRUDE OIL DRAIN TANK T-130, VENTED TO TVR SYSTEM LISTED ON PERMIT C-2872-64

C-2872-66-1: UP TO 300 BBL HORIZONTAL THREE PHASE SEPARATOR VESSEL V-100, VENTED TO TVR SYSTEMLISTED ON PERMIT C-28872-64

C-2872-67-1: UP TO 1,000 BBL FIXED ROOF CRUDE OIL WASTE WATER TANK T120, VENTED TO TVR SYSTEM LISTED ON PERMIT C-2872-64

## C-2872-68-1: CLASS 2 ORGANIC LIQUID TRUCK LOADING OPERATION WITH VAPOR RETURN PIPING TO TVR SYSTEM LISTED ON PERMIT C-2872-64

C-2872-69-0: 15.2 MMBTU/HR AIR ASSISTED JOHN ZINC OR ZEECO FLARE, OR EQUIVALENT, RECEIVING VAPORS FROM TVR SYSTEM LISTED ON PERMIT C-2872-64

As per District policy 1035 Flexibility in Equipment Descriptions in ATCs, some flexibility in the final specifications of the equipment will be allowed stated in the following ATC conditions:

The permiltee shall obtain writen Distict approval for the use of any equivalent equipment not specifically approved by thls Authorlty to Construct. Approval of the equivalent equipment shal be made only atter the District's detemination that the submilted design and performance of the proposed allemale equipment is equivalent to the specifically authorized equipment. [District Rute 2201] N

The permines's request for approval of equivalent equipment shall include the make, model, manufacturer's maximum rating, manufacturer's guaranteed emission rales, equipment drawing(s), and operational characteristics/parameters. [District Rule 2201] N

Alternate equlpment shall be of the same class and category of source as the equipment aulhorized by the Aulhority to Consitruct. [District Rule 2201] N

No emission factor and no emission shall be greater for the altemate equipment than for the proposed equipment. No changes in the hours of operation, operafing rate. throughput, or firing rale may be authorized for any aliarnate equipment. [District Rule 2201] N

## VI. Emission Control Technology Evaluation

Vessels and Tanks C-2872-64 thru'-67
Three-phase separator C-2872-66, oilfield production tanks C-2872-64, '-65 and '-67, associated piping and vessels, along with the truck loading operation $\mathrm{C}-2872-68$ in this project all have the potential to generate VOC emissions and are served by vapor control vented to either flare C-2872-69 or DOGGR approved disposal well(s).

The vapor control options are expected to reduce the inlet VOC emissions by at least $99 \%$ by weight.

## Crude Oill Load Out C-2872-68

Emissions from the crude oil load out operation include fugitive VOC emissions from connections, pumps and compressor seals, and other components.

VOC emissions are controlled with a limit of no more than 5 disconnects per day, a liquid disconnect drainage volume of no more than 10 ml per disconnect, and I \& M program consistent with the requirements of Rule 4409.

Flare C-2872-69
The flare Is used to incinerate produced gas and TVR gas. Visible emissions from the flare are minimized by the use of an air-assist to improve mixing of air and flared gas.

Manufacturer's specifications on the flare are included in Attachment III.

## Rule 4409

Fugitive VOCs from component leaks are minimized with the use of a leak inspection and maintenance protocol.

## VII. General Calculations

## A. Assumptlons

- Facility will operate 24 hours per day, 7 days per week, and 52 weeks per year.
- VOC (volatile organic compounds) expected from fugitive flquid and vapor components.
- Combustion air contaminants are expected from the flare.
- Emissions for each vessel are based on fugkive liquid/vapor component counts.
- Liquid components in light crude oil service ( $>30^{\circ} \mathrm{API}$ per applicant) will be assessed emissions per Distriot Policy SSP 2015.


## C-2872-68 Crude Oil Load out

- Truck loading emissions factor (EF) calculated using a proposed maximum TVP of 4.0 , temperature $=120$ degrees $F$, molecular weight of 100 and saturation factor of 0.6 (Table 5.2-1 of AP-42 and CUSA EE).
- Load out throughput, $476.16 \mathrm{bbl} / \mathrm{day}$ ( $19.999 \mathrm{gal} / \mathrm{day}$ ). (CUSA)
- Liquid density: $1 \mathrm{~g} / \mathrm{ml}$ (conservative)
- Maximum number of disconnects (unloading and load-out): 5/day (CUSA)
- Volume of spills from disconnects, 10 mL (BACT)
- VOC content of spilled oil, $100 \%$ and all evaporates
- Vapor Control Efficiency, $99 \%$ (connected to tank vapor control system)

Flare (C-2872-69):
Flared gas flow rates

- HP gas from 3 phase separator $=25 \mathrm{Mscfi} / \mathrm{day}$
- LP gas from TVR system $=340 \mathrm{Msc} /$ /day
- Total = $365 \mathrm{Mscf} / \mathrm{day}, 15.21 \mathrm{MMBtu} / \mathrm{hr}$, $365 \mathrm{MMBtu} / \mathrm{day}$
- Heating value of produced/TVR gas flared $=1,000 \mathrm{Btu} / \mathrm{scf}$
- Pilot emissions less than $2 \mathrm{lbs} / \mathrm{day}$ (application EE calculatlons). Therefore, pursuant to District $F Y$ Y- 310 pilot emissions are assumed to be insignificant for NSR consideration.


## B. Emission Factors

## Fugitive components:

Emissions factors, based on EPA Publication 453/R-95-017. Protocol for Equipment Leak Emission Estimate, Table 2-4, Oil and Gas Production Operations Average Emissions Factors, were used to calculate fugitlve emissions from the separator and tanks. See Attachment IV for emission calculation spreadsheets.

## Flare:

NOx, PM10 (non BACT), CO, and VOC emissions factors are from District FYI-83 "Use of AP-42 Section 13.5 Emission Factors for Industria! Flares".

Sulfur emissions:
Flared gas maximum $\mathrm{H}_{2} \mathrm{~S}$ content is 30.38 ppmv (equivalent to 1.8 grains $\mathrm{S} / 100 \mathrm{scf}$. $\left.0.00513 \mathrm{~b}-\mathrm{SO}_{2} / \mathrm{MMBtu}\right)^{*}$
" $(30.38$ scf $\mathrm{H} 2 \mathrm{~S} / \mathrm{MMscf}$ gas $) \times\left(\mathrm{lb}-\right.$ mole $\left.\mathrm{H}_{2} \mathrm{~S} / 379 \mathrm{scf} \mathrm{H}_{2} \mathrm{~S}\right) \times\left(64 \mathrm{lb}-\mathrm{SO}_{2} \mathrm{fl}\right.$-mole $\left.\mathrm{H}_{2} \mathrm{~S}\right) \times(\mathrm{sc} / 10008 \mathrm{Blu})$ $=0.00513 \mathrm{lb}-\mathrm{SO} / \mathrm{MMBIU}$

| Flare Emission Factors (EF) $\ln$ lD/MMBtu |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Gas type | $\mathrm{NO}_{x}$ | $\mathrm{SO}_{x}$ | $\mathrm{PM}_{10}$ | CO | VOC |
| TVR gas | 0.068 | 0.00513 | 0.026 | 0.370 | 0.063 |

## Truck Loading Emissions factor - Attachment V:

Crude oil truck toading emissions were estimated using the following equation AP-42 (A Compilation of Air Pollutant Emission Factors, January 1995), Section 5.2.2.1.1:

$$
\mathrm{LL}=12.46 * S * P * M^{*}(1 / \mathrm{T})^{*}(1-(\text { ef/ } / 100))
$$

Where $\mathrm{LL}=$ loading loss, pounds per $10^{3}$ gallons of tiquid loaded
$\mathrm{S}=$ a saturation factor. 0.6 (submerged loading). 1,45 (splash loading)
$P=$ true vapor pressure of liquid loaded, 4.0 psia
$T$ = temperature of liquid loaced, $120^{\circ} \mathrm{F}, 580^{\circ} \mathrm{R}$
$\mathrm{M}=$ molecular weight of vapors, $100 \mathrm{lb} / \mathrm{b}$-mole
eff $=$ overall vapor caplure and control efficiency, $99 \%$
$\mathrm{L}=(12.46)^{*}(0.6)^{*}(4.0)^{r^{\prime}}(100)^{*}(1 / 580)^{*}(1.99)=0.0516 \mathrm{lb}-\mathrm{VOC} / 1000$ gallons loaded.

## (GHG) emissions factors ( District Policy 2015)

$\mathrm{CO}_{2} 53.06 \mathrm{~kg} / \mathrm{MMBtu}(\mathrm{HHV})$ natural gas ( $116.7 \mathrm{lb} / \mathrm{MMB}$ (u)
$\mathrm{CH}_{4} 0.005 \mathrm{~kg} / \mathrm{MMBtu}(\mathrm{HHV})$ natural gas ( $0.011 \mathrm{lb} / \mathrm{MMB} \mathrm{mu}$ )
$\mathrm{N}_{2} \mathrm{O} 0.0001 \mathrm{~kg} / \mathrm{MMBtu}$ (HHV) natural gas ( $0.00022 \mathrm{fb} / \mathrm{MMEtu}$ )
GWP for $\mathrm{CH}_{4}=21 \mathrm{lb}-\mathrm{CO}_{2} \mathrm{e}$ per $\mathrm{lb}-\mathrm{CH}_{4}$
GWP for $\mathrm{N}_{2} \mathrm{O}=296$ ib-CO2e per $\mathrm{lb}-\mathrm{N}_{2} \mathrm{O}$
C. Calculations

1. Pre-Project Potential to Emit (PE1)

| PE1 - Summary of Daily Emissions |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
|  | $\mathrm{NO}_{2}$ | $\mathrm{SO}_{2}$ | $\mathrm{PM}_{10}$ | CO | VOC |
| C-2872-1-1 | 0 | 0 | 0 | 0 | 7.6 |
| C-2872-1-1 (LACT) | 0 | 0 | 0 | 0 | 23.2 |
| Total C-2872-1-1 | 0 | 0 | 0 | 0 | 30.8 |
| C-2872-2-1 | 0 | 0 | 0 | 0 | 6.9 |
| C-2872-3-1 | 0 | 0 | 0 | 0 | 12.0 |
| C-2872-4-1 | 0 | 0 | 0 | 0 | 4.9 |
| C-2872-7-1 | 0 | 0 | 0 | 0 | 7.3 |


| PE1* - Summary of Annual Emissions |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{NO}_{2}$ | $\mathrm{SO}_{2}$ | $\mathrm{PM}_{10}$ | CO | VOC |
| C-2872-1-1 | 0 | 0 | 0 | 0 | $\begin{gathered} 7.6 \times 365 \\ =2,774 \end{gathered}$ |
| C-2872-1-1 (LACT) | 0 | 0 | 0 | 0 | $\begin{gathered} 23.2 \times 365 \text { k* } \\ =8,468 \end{gathered}$ |
| Total C-2872-1-1 | 0 | 0 | 0 | 0 | 11,242 |
| C-2872-2-1 | 0 | 0 | 0 | 0 | $\begin{gathered} 6.9 \times 365 \\ =2.519 \end{gathered}$ |
| C.2872-3-1 | 0 | 0 | 0 | 0 | $\begin{gathered} 12.0 \times 365 \\ =4.380 \end{gathered}$ |
| C-2872-4-1 | 0 | 0 | 0 | 0 | $\begin{gathered} 4.9 \times 365 \\ =1.789 \\ \hline \end{gathered}$ |
| C-2872-7-1 | 0 | 0 | 0 |  | $\begin{gathered} 7.3 \times 365 \\ =2,665 \end{gathered}$ |

[^0]
## C-2872-64 through -67

The permit units are new and therefore PE1 $=0$ for NOx, SOx, PM10, CO, and VOCs.

## 2. Post Project Potential to Emit (PE2)

## C-2872-64 through '-67

Post-project component counts and detailed spreadsheet calculations for each storage vessel are included in Attachment IV. Crude oil load out emissions are calculated according to the methodology in AP-42 (Attachment V). The annual PE2 is the dally PE2 multiplied by 365 days/yr.

## C-2872-68 (Truck Load out Emissions)

## Load out Emissions

19,999 gal/day $\times 0.0516 \mathrm{lb} \mathrm{VOC} / 1000$ gallons $=1.0 \mathrm{tb}$ VOC/day, $365 \mathrm{ib} / \mathrm{yr}$
Disconnect Emissions
$(10 \mathrm{ml} / \mathrm{leak})(1.0 \mathrm{~g} / \mathrm{mL})(\mathrm{lb} / 454 \mathrm{~g})(5 /$ day $)=0.1 \mathrm{lb} /$ day
$(10 \mathrm{~m} / / \mathrm{leak})(1.0 \mathrm{~g} / \mathrm{ml})(\mathrm{lb} / 454 \mathrm{~g})(5 / \mathrm{day})(365 \mathrm{days} / \mathrm{yr})=40 \mathrm{lb} / \mathrm{yr}$
C-2872-69 Flare - combustion emssions:

| Pollutant | C-2872-69-0, Dally Flare incineration of WG Post-Proj Potential to Emit (PE2) |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Emission Factors |  | Heat input |  |  | Daily PE2 |  |  |
| $\mathrm{NO}_{\mathrm{x}}$ | 0.068 | ( $\mathrm{lb-NO} \mathrm{~S}^{\text {/MME }}$ M $(\mathrm{U})$ | $\times$ | 365 | (MMABtu/day' | = | 24.8 | ( $\mathrm{lb}-\mathrm{NO}_{\text {y }} / \mathrm{day}$ ) |
| $\mathrm{SO}_{x}$ | 0.00513 | (lb-SO/MMBiu) | $x$ | 365 | (MMBluiday) | = | 1.87 | (1b-SON/day) |
| PM ${ }_{10}$ | 0.026 | ( $\left.\mathrm{Bb-P} \mathrm{M}_{1} / \mathrm{MMBLU}\right)$ |  | 365 | (MMBlu'day) | $=$ | 9.5 | ( $\mathrm{lb}-\mathrm{PM}$ \% ${ }^{\text {/day }}$ ) |
| co | 0.970 | ( (b-COMMEイ) | $x$ | 365 | (MMBBlu/day) | $=$ | 136.1 | (Ib-COtday) |
| VOC | 0.063 | (b-VOC/MMBtu) | $\times$ | 365 | (WMBLu/day) | $=$ | 23,0 | (ib-VOC/day) |
| t | Annual Pra-Project Potentlal to Emit (PE2) |  |  |  |  |  |  |  |
|  | Emission Factors |  | Annual Max Heat input |  |  | Annual PE2 |  |  |
| $\mathrm{NO}_{\mathrm{x}}$ | 0.068 | ( $\mathrm{lb}-\mathrm{NO}_{\times} / \mathrm{MMB}$ /u) | $x$ | 133.225 | (billion Btu/year) | \# | 9,059 | (lb-NOwyear) |
| SOx | 0,00513 | (lb-SO ${ }_{\text {/ }}$ MMBlu) | $x$ | 133.225 | (billion Btulyear) | = | 683 | ( lb -SOxyear) |
| $\mathrm{PM}_{40}$ | 0.028 | ( $\mathrm{lb}-\mathrm{PM}_{4} / \mathrm{MMMBtu}$ ) | $x$ | 133.225 | (billion Btulyear) | $=$ | 3,464 | (1b-PM40 ${ }^{\text {dear }}$ ) |
| CO | 0.370 | (lb-CO/MMBtu) | $\times$ | 133.225 | (billion Btulyear) | = | 48.293 | ( $\mathrm{lb-CO}$ (year) |
| voc | 0.063 | (1b-VOC/MMBIL) | $x$ | 133.225 | (bllion Butyear) | $=$ | 0,393 | (tb-voc/year) |

The PE2 is summarized in the table below:

| PE2 - Summary of Daily Emissions |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{NO}_{2}$ | $\mathrm{SO}_{2}$ | $\mathrm{PM}_{10}$ | CO | Voc |
| C-2872-64-1, Crude oil tank T-110 w LACT and TVR | 0 | 0 | 0 | 0 | 30.8 |
| C-2872-65-1. Crude ofl drain tank T-130 | 0 | 0 | 0 | 0 | 4.9 |
| C-2872-66-1, 3 phase separator $V$-100 | 0 | 0 | 0 | 0 | 12.0 |
| C-2872-67-1, Waste water tank T-120 | 0 | 0 | 0 | 0 | 7.3 |
| C-2872-68-1, Class 2 truck loading | 0 | 0 | 0 | 0 | $1.0+0.1$ $=1.1$ |
| C-2872-69-0, Flare - Producedirvi gas | 24.8 | 1.9 | 9.5 | 135.1 | 23.0 |
| Total daily PE2 | 24.8 | 1.9 | 9.5 | 136.1 | 79.0 |


| PE2 - Summary of Annual Emissions |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{NO}_{2}$ | $\mathrm{SO}_{2}$ | $\mathrm{PM}_{10}$ | CO | VOC |
| C-2872-64-1, Crude tank T-110 w LACT \& TVR | 0 | 0 | 0 | 0 | 11,242 |
| C-2872-65-1, Crude oil drain tenk T-130 | 0 | 0 | 0 | 0 | 1,789 |
| C-2872-66-1, 3 phase separator V-100 | 0 | 0 | 0 | 0 | 4,380 |
| C-2872-67-1, Waste water tank T-120 | 0 | 0 | 0 | 0 | 2,665 |
| $\begin{aligned} & \text { C-2872-68-1, Class } 2 \text { truck loading }(1.0+0.1) \\ & =1.1 \times 365=402 \end{aligned}$ | 0 | 0 | 0 | 0 | $\begin{array}{r} \hline 365+40 \\ =405 \end{array}$ |
| C-2872-69-0, Flare - Produced/VVR gas | 8.059 | 683 | 3,464 | 49,293 | 8,393 |
| Total annual PE2 | 9,059 | 683 | 3,464 | 49,293 | 28,874 |

## Greenhouse gas emlasions (District Policy 2015)

Hourly Emissions

$$
\begin{aligned}
\mathrm{CO}_{2} \text { Emissions } & =15.21 \mathrm{MMBtu} / \mathrm{hr} \times 116.7 \mathrm{lb} / \mathrm{MMBtu}=1.775 .0 \mathrm{lb}-\mathrm{CO}_{2} \mathrm{e} / \mathrm{hour} \\
\mathrm{CH}_{4} \text { Emissions } & =367.64 \mathrm{MMBtu} / \mathrm{hr} \times 0.011 \mathrm{lb} / \mathrm{MMBtu} \times 21 \mathrm{lb}-\mathrm{CO}_{2} \mathrm{e} \text { per } \mathrm{lb}-\mathrm{CH}_{4} \\
& =3.5 \mathrm{lb}-\mathrm{CO}_{2} \text { 日 } / \mathrm{hr} \\
\mathrm{~N}_{2} \mathrm{O} \text { Emissions } & =367.64 \mathrm{Btu} / \mathrm{hr} \times 0.00022 \mathrm{lb} / \mathrm{Btu} \times 296 \mathrm{lb}-\mathrm{CO}_{2} \mathrm{e} \text { per ib- } \mathrm{N}_{2} \mathrm{O} \\
& =1.0 \mathrm{bb} \cdot \mathrm{CO}_{2}^{\mathrm{e}} \mathrm{hr} \\
\text { Totat }=1,775.0 & +3.5+1.0=1,779.5 \mathrm{lb}-\mathrm{CO}_{2} \mathrm{e} / \mathrm{hr}
\end{aligned}
$$

## Daily

$\mathrm{CO}_{2}$ Emissions $=365 \mathrm{MMBtu} / \mathrm{day} \times 116.7 \mathrm{lb} / \mathrm{MMBtu}=42,595.5 \mathrm{lb}-\mathrm{CO}_{2} \mathrm{e} / \mathrm{day}$
$\mathrm{CH}_{4}$ Emissions $=365 \mathrm{MMB}$ /u/day $\times 0.011 \mathrm{lb} / \mathrm{MMBlu} \times 21 \mathrm{lb}-\mathrm{CO}_{2}$ e per $\mathrm{lb}-\mathrm{CH}_{4}$

$$
=84.3 \mathrm{lb}-\mathrm{CO}_{2} \mathrm{e} / \mathrm{day}
$$

```
N2O Emissions = 365 Btu/day }\times0.00022\textrm{lb}/\textrm{Btu}\times296\textrm{lb}-\mp@subsup{\textrm{CO}}{2}{}\textrm{e}\mathrm{ per lb-N
    =23.8 lb-CO2 - %/h:
Daily Total = 42,703.6 lb --02 e/day
```


## Annua!

```
Annual \(=\) daily \({ }^{*} 365\) days/year
Annual Total \(=42,703.6 * 365=15,586,808\) lb-CO2e/yr
Short tons \(=15,586,808 \mathrm{lb}-\mathrm{CO} 2 \mathrm{e} / \mathrm{yr}+2,000 \mathrm{lb} / t \mathrm{n}\)
    \(=7,793.40\) short tons- \(\mathrm{CO}_{2} \mathrm{e} / \mathrm{yr}\)
Metric tons \(=7,793.40\) Short tons * 0.9072 Metric ton/short ton
    \(=7,070.18\) Metric tons-CO20/year
```

Emissions profiles are included in Attachment VI.

## 3. Pre-Project Stationary Source Potential to Emit (SSPE1)

Pursuant to Section 4.9 of District Rule 2201, the Pre-Project Stationary Source Potential to Emit (SSPE1) is the Potential to Emit (PE) from all units with valid' Authorities to Construct (ATC) or Permits to Operate (PTO) at the Stationary Source and the quantity of emission reduction credits (ERC) which have been banked since September 19, 1991 for Actual Emisstons Reductions that have occurred at the source, and which have not been used on-site. Facility C-2872 has no ERCs.

The Pre-Project Stationary Source Potential to Emit (SSPE1) is summarized below:

| SSPE1 (lblyear)* |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Permit Unit/ERC | $\mathrm{NO}_{\mathrm{x}}$ | $\mathrm{SO}_{\mathrm{X}}$ | $\mathrm{PM}_{10}$ | CO | VOC |
| C-2872-1-1 | 0 | 0 | 0 | 0 | $\begin{gathered} 7.6 \times 365 \\ =2,774 \\ \hline \end{gathered}$ |
| $\begin{aligned} & \text { C-2872-1-1 } \\ & \text { (LACT) } \end{aligned}$ | 0 | 0 | 0 | 0 | $\begin{gathered} 23.2 \times 365{ }^{* *} \\ =8,468 \end{gathered}$ |
| Total C-2872-1-1 | 0 | 0 | 0 | 0 | 11.242 |
| C-2872-2-1 | 0 | 0 | 0 | 0 | $\begin{gathered} 6.9 \times 365 \\ =2,519 \end{gathered}$ |
| C-2872-3-1 | 0 | 0 | 0 | 0 | $\begin{gathered} 12.0 \times 365 \\ =4,380 \end{gathered}$ |
| C-2872-4-1 | 0 | 0 | 0 | 0 | $\begin{gathered} 4.9 \times 365 \\ =1.789 \\ \hline \end{gathered}$ |
| C-2872-7-1 | 0 | 0 | 0 |  | $\begin{gathered} 7.3 \times 365 \\ =2.665 \\ \hline \end{gathered}$ |
| SSPE1 | 0 | 0 | 0 | 0 | 22,595 |

[^1]*LACT Unit emissions calculated in the project Attachment IV

## 4. Post Project Stationary Source Potential to Emit (SSPE2)

Pursuant to Section 4.10 of District Rule 2201, the Post Project Stationary Source Potential to Emit (SSPE2) is the Potentlal to Ernit (PE) from all units with valid Authorities to Construct (ATC) or Permits to Operate (PTO) af the Stationary Source and the quantity of emission reduction credits (ERC) which have been banked since September 19, 1991 for Actual Emissions Reductions that have occurred at the source, and which have not been used on-site. Facility C-2872 has no ERCs.

The Post-Project Stationary Source Potential to Emit (SSPE2) is summarized below:

| Post-Project Stationary Source Potential to Emit [SSPE2] (Ib/year) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Permit Unit | NO $_{\mathrm{x}}$ | SO $_{\mathrm{x}}$ | PM $_{10}$ | CO | VOC |
| ATC C-2872-64-1 | 0 | 0 | 0 | 0 | 11,242 |
| ATC C-2872-65-1 | 0 | 0 | 0 | 0 | 1,789 |
| ATC C-2872-66-1 | 0 | 0 | 0 | 0 | 4,380 |
| ATC C-2872-67-1 | 0 | 0 | 0 | 0 | 2,665 |
| ATC C-2872-68-1 | 0 | 0 | 0 | 0 | 405 |
| ATC C-2872-69-0 | 9,059 | 683 | 3,464 | 49,293 | 8,393 |
| Post-Project <br> SSPE2 | 9,059 | 683 | 3,464 | 49,293 | 28,874 |

## 5. Major Source Determination

## Rule 2204 Major Source Determination:

Pursuant to District Rule 2201, a Major Source is a stationary scurce with post-project emissions or a Post Profect Stationary Source Potential to Emit (SSPE2), equal to or exceeding one or more of the following threshold values. For the purposes of determining major source status the following shall not be included:

- any ERCs assoclated with the stationary source
- Emissions from non-road IC engines (i.e. at a site < 12 months)
- Fugitive emissions, except for specific categories specified in 40 CFR 51.165

Major source determination is shown in the following table:

| Rule 2201 Major Source Determination (lb/year) |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  | NO $_{x}$ | SOX | $\mathrm{PM}_{40}$ | CO | VOC |
| SSPE1 | 0 | 0 | 0 | 0 | 22,595 |
| SSPE1 less fugitives | 0 | 0 | 0 | 0 | 0 |
| SSPE2 | 9,059 | 683 | 3,464 | 49,293 | 28,874 |
| SSPE2 less fugitives | 9,059 | 683 | 3,464 | 49,293 | 8,393 |
| Major Source Threshold | 20,000 | 140,000 | 140,000 | 200,000 | 20,000 |
| Major Source? | No | No | No | No | No |

As seen in the table above, the faclity is not a Ruie 2201 Major Source and is not becoming a Major Source as a result of this project.

## Rule 2410 Major Source Determination:

The facility evaluated under this project is not listed as one of the categories specified in 40 CFR 52.21 (b)(1)(1), Therefore the following PSD Major Source thresholds are applicable. Fugitive emissions are not included.

| PSD Major Source Determination |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (tonslyear) |  |  |  |  |  |  |  |

As shown above, the facllity is not an existing major source for PSD for any one pollutant. Therefore the facility is not an existing major source for PSD.

## 6. Baseline Emissions (BE)

The BE calculation (in lbs/year) is performed pollutant-by-pollutant for each unit within the project, to calculate the QNEC and If applicable, to determine the amount of offsets required.

Pursuant to Section 3.7 of District Rule 2201، BE $=$ Pre-project Potential to Emit for:

- Any unit located at a non-Major Source,
- Any Highly-Utilized Emissions Unit, located at a Major Source,
- Any Fully-Offset Emissions Unit, tocated at a Major Source, or
- Any Clean Emissions Unit, Yocated at a Major Source.

Otherwise,

BE = Historic Actual Emissions (HAE), calculated pursuant to Section 3.22 of District Rule 2201.

Baseline emissions for the new equipment is $m 0$.

## 7. SB 288 Major Modification

SB 288 Major Modification is defined in 40 CFR Part 51.165 as "any physical change in or change in the method of operation of a major stationary source that would result in a significant net emissions increase of any pollutant subject to regulation under the Act."

Since this facility is not a major source for any of the pollutants addressed in this project, this project does not constitute an SB 288 major modification.

## 8. Federal Major Modlfication

District Rule 2201, Section 3.17 states that Federal Major Modifications are the same as "Major Modification" as defined in 40 CFR 51.165 and part D of Title I of the CAA.

Since this facility is not a Major Source for any pollutants, this project does not constitute a Federal Major Modification. Additionally, since the facility is not a major source for $\mathrm{PM}_{10}$ (140,000 tb/year), it is not a major source for PM2.5 (200,000 tb/year).
9. Rule 2410 - Prevention of Significant Deterioration (PSD) Applicabllity Determination

Rule 2410 applies to pollutants for which the District is in aftainment or for unclasssified, pollutants. The pollutants addressed in the PSD applicablity determination are listed as follows:

- NO2 (as a primary pollutant)
- SO2 (as a primary pollutant)
- CO
- PM
- PM10
- Greenhouse gases (GHG): $\mathrm{CO} 2, \mathrm{~N} 2 \mathrm{O}, \mathrm{CH} 4, \mathrm{HFCs}, \mathrm{PFCs}$, and SF6

The first step of this PSD evaluation consists of determining whether the facility is an existing PSD Major Source or not (See Section VII.C. 5 of this document).

This facility is NOT an existing PSD Major Source.
The second step of the PSD evaluation is to determine if the project, by itself, would result in a PSD signifficant increase.
I. Potential to Emit for New or Modified Emission Units vs PSD Major Source Thresholds

As a screening tool, the project potential to emit from all new and modified units is compared to the PSD major source threshold, and if total project potential to emik from all new and modified units is < this threshold, no futher analysis will be needed.

The facility or the equipment evaluated under this project is not listed as one of the categories specified in 40 CFR 52.21 (b)(1)(0). Therefore the following PSD Malor Source thresholds are applicable.

| PSD Major SourceDetermination: Potential to Emit <br> (tons/year) |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{NO}_{2}$ | VOC | $\mathrm{SO}_{2}$ | CO | PM | $\mathrm{PM}_{10}$ | $\mathrm{CO2e}$ |
| Total PE from New \& Moditied |  |  |  |  |  |  |  |
| Units* | 4.6 | 14.4 | 0.3 | 24.6 | 1.7 | 1.7 | $7.793^{*}$ |
| PSD Major Source threshold | 250 | 250 | 250 | 250 | 250 | 250 | 100,000 |
| New PSD Major Source? | N | N | N | N | N | N | N |

*lara '-59 only
As demonstrated in the table above, the project potential to emit, by itself, does not exceed one or more of the PSD major source threshoids. Therefore Rule 2410 is not applicable and no further discussion is required.

## 9. Quarterly Net Emissions Change (QNEC)

The QNEC is calculated solely to establish emissions that are used to complete the District's PAS emissions profile screen. The permit units are new and therefore QNEC $=P E 2 / 4$.

## VIII. Compliance

Rule 2201 New and Modlfed Stationary Source Review Rule

## A. Best Avallable Control Technology (BACT)

## 1. BACT Appilcability

BACT requirements are triggered on a poliutant-by-pollutant basis and on an emissions unit-by-emissions unit basis. Unless exempted pursuant to Section 4.2, BACT shall be required for the following actions:*:
a. Any new emissions unit with a potential to emit exceeding two pounds per day,
b. The relocation from one Stationary Source to another of an existing emissions unit with a potential to emil exceeding two pounds per day.
c. Modifications to an existing emissions unit with a valid Permit to Operate resulting in an AIPE exceeding two pounds per day, and/or
d. Any new or modified emissions unit, in a stationary source project, which results in an S8288 Major Modification or a Federal Major Mod, as defined by the rule.
"Except for CO emissions from a new or modifles emisslons unit at a Stationary Source with an SSPE2 of less than 200,000 pounds per year of $C 0$
a. New emisslons units - PE $>2$ lbiday

The proposed vessets C-2872-64-1 through '-67-1 have VOC emissions exceeding 2 $\mathrm{lb} /$ day and BACT is triggered. Emissions from fare $\mathrm{C}-2872-69$ exceed $2 \mathrm{lb} /$ day for NOx, PM10, CO, and VOC. BACT is not triggered for CO for the flare as the SSPE in less than $200,000 \mathrm{lb} / \mathrm{yr}$.
b. Relocation of emissions units - PE > 2 lbiday

There are no emissions units being relocated from one stationary source to another; therefore BACT is not triggered.
c. Modification of emlsslons units - AIPE $>2$ lb/day

There are no emissions units being modified with this project proposal,

## d. SB 288/Federal Major Modification

As discussed in Section VII.C. 7 above, this project does not constitute a SB 288 and/or Federal Major Modification; therefore BACT is not triggered for any pollutant.

## 2. BACT Guidelines - Attachment VII

BACT Guideline 7.3.1 applies to the tanks and three phase separator vessel.
[Petroleum and Petrochemical Production - Fixed Roof Organic Liquid Storage or Processing Tank, < 5,000 bbl Tank capacity]

BACT Guldeine 1.4.2 applies to the flare. [Waste Gas Flare - Incinerating Produced Gas].

## 3. Top-Down BACT AnalysIs - Attachment VIII

Per Permit Services Policies and Procedures for BACT. a Top-Down BACT analysis shall be performed as a part of the application review for each appilication subject to the BACT requirements pursuant to the District's NSR Rule.

C-2872-64 through '-67 (tanks and separator vessel):
Pursuant to the attached Top-Down BACT Analysis, BACT for VOC for unit C-2872-64 through ' 67 has been satisfied with the following:

VOC: $99 \%$ control, inspection and maintenance program; reinjection of uncondensed vapors to formation or disposal in flare

## C-2872-69-0 (Flare)

Pursuant to the attached Top-Down BACT Analysis, BACT has been satisfied with the following:

NOx and VOCs: Air assisted flare (steam is not available)
PM $M_{10}$ : Air assisted flare, Pilot light fired on LPG or natural gas
B. Offsets

## 1. Offset Applicability

Offsel requirements shall be triggered on a pollutant by pollutant basis and shall be required if the SSPE2 equals to or exceeds the offset threshold levels in Table 4-1 of Rule 2201.

The SSPE2 is compared to the offset thresholds in the following tabie.

| Offset Determination (bb/year) |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{NO}_{\mathrm{X}}$ | $\ldots \mathrm{SO}_{\mathrm{X}}$ | $\mathrm{PM}_{10}$ | CO | VOC |
| SSPE2 | 9,059 | 683 | 3,464 | 49,293 | 28,874 |
| Offset Thresholds | 20,000 | 54,750 | 29,200 | 200,000 | 20,000 |
| Offsets triggered? | No | No | No | No | Yes |

## 2. Quantity of Offsets Required

As seen above, the facility is an existing Major Source for all pollutants and the SSPE2 is greater than the offset threshold; therefore offset calculations will be required for this project.

Per Sections 4.7.1 and 4.7.3, the quantity of offsets in pounds per year is calculated as follows for sources with an SSPE1 greater than the offset threshold levels before implementing the project being evaluated.

Offsets required (b/year) $=(\Sigma[P E 2-B E]+I C C E) \times D O R$, for all new or modifled emissions units in the project,
Where,

```
PE2 = Post Project Potential to Emit, (lo/year)
BE = Baseline Emissions, (1b/year)
ICCE = Increase in Cargo Carrier Emissions, (Ib/year)
DOR = Distance Offset Ratio, determined pursuant to Section 4.8
\(B E=\) Pre-project Potential to Emit for:
- Any unit located at a non-Major Source.
- Any Highly-Utijized Emissions Unit, located at a Major Source,
- Any Fuily-Offse: Emissions Unlt, located at a Major Source, or
- Any Clean Emissions Unit, Located at a Major Source.

Otherwise,
\(B E=\) Historic Actual Emissions (HAE)
As calculated in Section VII.C. 6 above, the Baseline Emissions (BE) from this unit are equal to the Pre-Project Potential to Emit (PE1) since the units are new. In addition \(\mathrm{PE} 1=0 \mathrm{lbs} /\) day for all pollutants.

Also, there are no increases in cargo carrier emissions; therefore offsets can be determined as follows:

Offsets required (lb/year) \(=([\) PPE2 -BE\(]+\) ICCE \() \times\) DOR
\[
\text { ICCE } \quad=0 \mathrm{lb} \text { lyear }
\]

Offsets required \((\mathrm{bb} /\) year \()=(\mathrm{PE} 2-0) \times D O R\)
As stated above, \(B E=\) PE1 for every permit unit in this project. Also, there are no increases in cargo carrier emissions; therefore, \(\operatorname{ICCE}=0\) for all units.
\begin{tabular}{|c|c|}
\hline New Unit, PE2 & Deleted Unit, PE1 \\
\hline \({ }^{-} \cdot 644,11,242\) & - \(-1,11,242\) \\
\hline \({ }^{-}-65,1,789\) & \({ }^{1}-4,1,789\) \\
\hline - \(-66,4,380\) & -3, 4,380 \\
\hline '-67, 2,665 & -7, 2,685 \\
\hline & \\
\hline \(\cdots 68,405\) & \\
\hline \(\cdot-69,8,393\) & \\
\hline & --2, 2,519 \\
\hline EPE2 \(=28,874\) & 「PE1 \(=22,595\) \\
\hline
\end{tabular}
\[
\begin{aligned}
\text { Offets required (lb/year) } & =([5 \mathrm{PE} 2-\mathrm{BE}) \times \mathrm{DOR} \\
& =28,874-22,595 \\
& =6,279 \mathrm{lb} / \mathrm{yr}
\end{aligned}
\]

Note that there are no offsels required for units ' -64 through ' -67 with deletion of tanks '1, '-4, '3, and ' -7 .

To offset emissions from '-68 (loading rack) and '-69 (flare) applicant has proposed to use ERC certificate S-3737-1 with reductions occurring greater than 15 miles from the proposed equipment. Therefore,

\section*{C-2872-68}

Offsets required (lb/year) \(=405 * 1.5\)
\[
=608 \mathrm{lb}-\mathrm{VOC} / \mathrm{year}
\]

Calculating the appropriate quarterly emissions to be offset is as follows:
\(\frac{1^{\text {sh }} \text { Quarter }}{152} \quad \frac{2^{\text {no }} \text { Quarter }}{152} \quad \frac{3^{\text {rd }} \text { Quarter }}{152} \quad \frac{4^{\text {th }} \text { Quanter }}{152}\)

\section*{C-2872-69}

Offsets required (lb/year) \(=\left(8,393-2,519^{*}\right) * 1.5\) \(=8,811 \mathrm{lb}\)-VOC/year
"netted with removal of '-2
Calculating the appropriate quarterly emissions to be offset is as follows:
\(\frac{1^{\text {st }} \text { Quarter }}{2,203} \quad \frac{2^{\text {nd }} \text { Quarter }}{2,203} \quad \frac{3^{\text {ra }} \text { Quarter }}{2,203} \quad \frac{4^{\text {th }} \text { Quarter }}{2,203}\)

The above amounts from ERC certificate S-3737-1 have been reserved at \(2,203+152=2,355 \mathrm{lb} / \mathrm{qli}\) for the project.

\section*{Proposed Rule 2201 (offset Conditions:}

\section*{S-2872-68}
(GC\# 4447 - edited) Pritr 10 operating equipment under this Authorily to Construct. permittee shall surrender VOC emission reduction credts for the following quantliy of emissions: ist quarter - 152 lb , 2 nd quarter - 152 lb . 3 rd quater - 152 lb , and fourth quater - 152 lb . These amounts include the appicable offset ratio specfied in Rule 2201 Section 4.8 (as amended 4/21/11) for the ERC specified below. [District Rule 2209]

ERC Certifcate Number S-3737-1 (or a cenificate spll from tinls certificale) shall be used to supply the required offsels, unless a revised offseting proposal is received and approved by the District, upon which this Authority to Construct shall be reissued, administralivaly specifing the new offsetiling proposal. Original public nolidng requirements, if any, shall be duplicated prior to reissuance of this Aulhority to Construct. [Disirict Rule 2201]

\section*{S-2872-69}
( OCH 4447 - ediled) Prlor to oparating equipment under this Authority to Construct. permiltee shall surfender VOC emission reducton credits for the following quantity of emissions: 18 st quarter \(-2,203 \mathrm{Jb}\), 2nd quarter - 2,203 lb, 3rd quarter \(-2,203 \mathrm{lb}\). end fourth quarter - \(2,203 \mathrm{lb}\). These amounts include the applicable offsel ratio spectifed in Rule 2201 Section 4.8 (as amended 4/21/11) For the ERC specified below. [District Rule 2201]

ERC Centacate Number \(3-3737-1\) (or a certificate split from this centificate) shall be used to supply the required offets, unless a revised offselting proposal is recelved and approved by the Dislich, upon which this Authorlty to Construct shall be relssued, administralively specilying the new offseting proposal. Original public noticing requlrements, If any, shall be duplicated prior to reissuance of this Authorily to Construct. [District Rule 2201]

\section*{c. Public Notiflcation}

\section*{1. Applicability}

Public noticing is required for:
a. New Major Sources, Federal Major Modifications, and SB288 Major Modifications,
b. Any new emissions unit with a Potential to Emit greater than 100 pounds during any one day for any one pollutant.
c. Any project which results in the offset thresholds being surpassed, and/or
d. Any project with an SSIPE of greater than \(20,000 \mathrm{lb}\) /year for any pollutant.
a. New Major Sources, Federal Major Mods, and SB288 Major Mods

New Major Sources are new facilities, which are also Major Sources. Since this is not a new facility, public noticing is not required for New Major Source purposes.

As demonstrated in VII.C.7, this project does not constitute a SB 288 or Federal Major Modification; therefore, public noticing for SE 288 or Federal Major Modification purposes is not required.

\section*{b. \(P E>100 \mathrm{lb} /\) day}

Applications which include a new emissions unit with a Potential to Emit greater than 100 pounds during any one day for any pollutant will trigger public noticing requirements. As seen in Section VII.C. 2 above, this project does include a new flare which has daily emissions greater than \(100 \mathrm{lb} /\) day for CO ; therefore public noticing for \(\mathrm{PE}>100 \mathrm{lb} /\) day purposes is required.

\section*{c. Offset Threshold}

The following table compares the SSPE 1 with the SSPE2 in order to determine if any offsel thresholds have been surpassed with this project.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{ Offset Threshold } \\
\hline Pollutant & \begin{tabular}{c} 
SSPE1 \\
\((\mathrm{lb} / \mathrm{yr})\)
\end{tabular} & \begin{tabular}{c} 
SSPE2 \\
\((\mathrm{lb} / \mathrm{yr})\)
\end{tabular} & \begin{tabular}{c} 
Offset \\
Threshold
\end{tabular} & Public Notice Required? \\
\hline \(\mathrm{NO}_{\mathrm{x}}\) & 0 & 9,059 & \(20,000 \mathrm{lb} / \mathrm{yr}\) & No \\
\hline \(\mathrm{SO}_{x}\) & 0 & 683 & \(54,750 \mathrm{lb/yr}\) & No \\
\hline \(\mathrm{PM}_{10}\) & 0 & 3,464 & \(29,200 \mathrm{Ib} / \mathrm{yr}\) & No \\
\hline CO & 0 & 49,923 & \(200,000 \mathrm{lb} / \mathrm{yr}\) & No \\
\hline VOC & 22,595 & 28,874 & \(20,000 \mathrm{lb} / \mathrm{yr}\) & \begin{tabular}{c} 
Profect increases did not cause facilfy \\
to pass through the offset threshold
\end{tabular} \\
\hline
\end{tabular}

As detailed above, there were no thresholds surpassed with this project; therefore public noticing is not required for offset purposes.

\section*{d. SSIPE \(>20,000 \mathrm{lb} /\) year}

Public notification is required for any permitting action that results in a Stationary Source Increase in Permitted Emissions (SSIPE) \(>20,000\) Ib/year of any affected poilutant. According to District policy, the SSIPE is calculated as the Post Project Stationary Source Potential to Emit (SSPE2) minus the Pre-Project Stationary Source Potential to Emit (SSPE1), i.e. SSIPE = SSPE2 - SSPE1. The values for SSPE2 and SSPE 1 are calculated according to Rule 2201, Sections 4.9 and 4.10, respectively. The SSIPE is compared to the SSIPE Public Notice thresholds in the following table:
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Stationary Source Increase in Permitted Emissions [SSIPE]-Public Notice} \\
\hline Pollutant & \[
\begin{aligned}
& \text { SSPE? } \\
& \text { (lb/year) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { SSPE1 } \\
& \text { (blyear) }
\end{aligned}
\] & SSIPE
(lb/year) & SSIPE Public Notice Threshold. & Public Notice Required? \\
\hline \(\mathrm{NO}_{x}\) & 9,059 & 0 & 9,059 & 20,000 lb/year & No \\
\hline \(\mathrm{SO}_{x}\) & 683 & 0 & 683 & 20,000 lb/year & No \\
\hline \(\mathrm{PM}_{10}\) & 3,464 & 0 & 3,464 & 20,000 lb/year & No \\
\hline CO & 49,923 & 0 & 49,923 & 20,000 lb/year & Yes \\
\hline VOC & 28,874 & 22,585 & 6,279 & 20,000 lb/year & No \\
\hline
\end{tabular}

As demonstrated above, the SSIPE for CO is greater than 20,000 lblyear; therefore public noticing for SSIPE purposes is required.

\section*{2. Public Notice Action}

As discussed above, this project will result in emissions, for CO , which subject the project to the noticing requirements listed above. Therefore, public notice will be required for this project.

\section*{D. Daily Emission Limits (DELs)}

Daily Emissions Limitations (DELs) and other enforceable conditions are required by Section 3.15 to restrict a unit's maximum daily emissions, to a level at or below the emissions associated with the maximum design capacity. The DEL must be contained in the latest ATC and contained in or enforced by the latest PTO and enforceable, in a practicable manner, on a dally basis. DEls are also required to enforce the applicability of BACT.

\section*{Proposed Rule 2201 (DEL, Condlitons:}

\section*{C-2872-64-1 (Crude Oil tank, including LACT, with TVR system):}

VOC fugitive emissions from the componerts in gas and liquld service for the storege tank shali not exceed \(7.6 \mathrm{l} / \mathrm{day}\). [District Rula 2201]

VOC fuglitive emissions from the components in gas and liquild service for the vapor control system and LACT shall not exceed 23.2 lib/day. [Distict Rule 2201]

\section*{C-2872-65-1 (Drain tank):}

VOC fugitve emissions from the components in gas and liquid service for the storage tank shall not exceed \(4.9 \mathrm{lb} /\) day. [District Rule 2201]

\section*{C-2872-66-1 (Three Phase Separator):}

VOC fuglive emissions from the componanis in gas and liquid service for the vessat shall not exceed 12.0 Ib/day. [Distric: Rule 2201)

\section*{C-2872-67-1 Waste Water Tank):}

VOC fuglive amissions from the components in gas and liquid servica for the tank shall not exceed 7.3 1b/day. [District Rule 2201]

\section*{C-2872-68-1 (Class 1 Organic Liquid Truck Loading Operation):}

Total product loaded into trucks via truck loading rack shall not exceed 19.999 gallons per day. [District Rules 2201 and 4624]

During truck loading, displaced vapors ghall be vented to the TVR system Hsted on lank permil C-2872-A. [Oistrici Rule 4624, 5.1.2.1 and 6.2.1.3]

Controlled VOC emisstons from truck loading operation shall not exceed 0.0516 lb -vOC/1000 galions loaded. [Disitrat Rules 2201 and 4624]

Total number of disconnects shall nol exceed 5 per day. [District Rule 2201]
During hose disconnects the maximum liquid spillage for ligulds shall not exceed 10 milliliters/disconnect based on an average from 3 consecutive disconnects. [Districl Rule 2201 and 4024]

\section*{C-2872~69-0 (Flare):}

Emisslons rates from the flare shall not exceed any of the following limits; \(0.068 \mathrm{ID}-\mathrm{NOxMMBLU}, 0.0051 \mathrm{lb}-\)


The pild flame for the flare shall only be fired on natural gas, LPG, or propane. [Dibirict Rule 2201] Heat Input to the flare shall nol exceed 365 MMBtu In any one day nor \(133,225 \mathrm{NMBlu}\) per calendar year. (District Rule 2201]

Sulfur content of gas flared shall not exceed 1.8 grain-S/100 scf. [Disirict Rules 2201 and 4801] A flame shall be present at all limes when combusilble gases are vented through this flare. [District Rules 2201 and 43f1, 6.2]

Flare shall be equipped with an operaling flow-sensing ignition system, an oparaling heat sensing device such as a thermocouple. ultraviolet beam sensor, inlrared sensor, or an equivalent operating device capable of continuously delecting at least one plot flame or the flare flame is present. [Disirict Rula 43才1] N

\section*{C-2872-64, '-65, '-66 \& '-67}

Permittee shall maintain accurate component count for tank according to EPA's "Protocol for Equipment Leak Emission Estimate," Table 2-4, Oll ano Gas Production Operations Average Emission Factors. Permiltee shall update such recoros when new components are approved and installed. [Dlsirict Ru'le 2201]

\section*{E. Compliance Assurance}

\section*{1. Source Testing}

District Policy APR 1705 states "certain types of equipment or operations do to lend themselves to source testing. Large sources of fugitive emissions without a stack are an example of such sources.

CUSA has proposed generally accepted emission factors for the flare. All the other emissions associated with this project are fugitive VOC. Therefore, no source testing will be required to demonstrate compliance.

\section*{2. Monitoring}

Vessels and tanks fugitive VOC emissions:
All piping, fillings, and valves on this tank shall be inspeclad annually by the faclity operator in accordance with EFA Method 21, with the instrument callibrated with methane, to ensure compllance with Ite leaking provisions of this permil. [District Rules 2201 and 4623 ]

Flare fuel gas sulfur content
Suffur content and higher heating valus of the flared gas shall be tested within 60 days of slartup. [District Rule 2201]

The sulfur content and higher heating value of the flared gas shall be tested al leasi annually. [District Rule 2201]

The following lest methods shall be used: Hydrogen sulfide content o produced TVR gbs shall be determined using ASTM Melhod D 1945-96, ASTM Melhod UOP 539-97, ASTM Method 4084-94, or

ASTM Method D-4810-88. If monitored using continuous analyzers not employing gas chromalography, the total sulfur content shall be determined by using EPA Melhod D4468-85. Fuel gas hhy shall be determined using ASTM D1826 or D1945 in conjuncton wilh ASTM D3588. Applicant may use other test method(s) wilh prier written approval from the APCO. [District Rules 2201 and 4311, 6.3.4]

\section*{3. Recordkaeping}

Recordkeeping is required to demonstrate compliance with the offset: public notification and daily emission limit requirements of Rule 2201. The following conditions will appear on all the ATC's in this project:

\section*{C-2872-64 through '-67 (Separator and tanks)}

Pernittee shall maintain an accurate fugitive component count and resuliant embsions calculated using emission factors fram EPA Publication 453/R-95-017 Protocol for Equipment Leak Emission Estilmates Table 2-4 Oil and Gas Production Oparations Average Emission Factors (kg/hr/source). Permittee shall update such records when new components are inslalled. [District Rule 2201]

The permitee shall keep accurate records of the dates of inspection and monitoring and the components inspecied and monitored. [District Rule 2201]

Operator shall mantain an inspection log contalning the following 1) Type of component leaking: 2) Date and time of leak detection, and method of delection; 3) Daie and lime of leak repair, and emission lavel of recheck after leak is repaired; 4) method used to minimize the leak to lowest possible level within 8 hours after detecllon. [District Rules 2201 and 4623]

The permittee shall maintain all records of required monitoring data and support information for inspection at any \(\{\) ime for a period of five years. [Olstrict Rule 2201 and 4623 ] N

\section*{C-2872-68 (Truck loading)}

The operator shall maintaln records of truck load out dalily liquid throughput and number of disconnects. Records shall be retained for a minimum of five years and made readily available during normal business hours and submitted upon request to the APCO, CARB, or EPA. [District Rule 4624] N

\section*{C-2872-69 (Flare)}

The operator shall melntain all records of required monitoring data and support information for inspection at any time for a period of five years. [Disirict Rule 2201]

Permiltee shall keep accurate recards of (1) dally, and annual volume (scl) of gas fared; (2) flare gas sulfur conlent tesi results; and (3) flare gas higher heating value test results. [District Rules 2201 and 4311]

Measured higher heating value and volume (scf) of gas flared shall be used to determine compliance with heat input limits. [Olstricl Rule 2201]

\section*{4. Reporting}

No reporting is required to demonstrate compliance with Rule 2201.

\section*{F. Ambient Air Quality Analysls (AAQA)}

An AAQA shall be conducted for the purpose of determining whether a new or modified Stationary Source wilf cause or make worse a violation of an alr quality standard. The District's Technical Services Division conducted the required analysis. Refer to Attachment IX of this document for the AAQA summary sheet.

The proposed location is in an attainment area for \(\mathrm{NOx}_{\mathrm{x}}, \mathrm{CO}\), and \(\mathrm{SO}_{\mathrm{X}}\). As shown by the AAQA summary sheet the proposed equipment will not cause a violation of an alr quality standard for \(\mathrm{NO}_{\mathrm{x}}, \mathrm{CO}\), or SOx .

The proposed location is in a non-attainment area for the state's \(\mathrm{PM}_{10}\) as well as federal and state \(\mathrm{PM}_{2.6}\) thresholds. As shown by the AAQA summary sheet the proposed equipment will not cause a violation of an air quality standard for \(\mathrm{PM}_{10}\) and \(\mathrm{PM}_{2.5}\).

\section*{Rule 2530 Federally Enforceable Potential to Emit}

The purpose of this rute is to restrict the emissions of a stationary source so that the source may etect to be exempt from the requirements of Rule 2520. Pursuant to Rule 2530, since this facility has elected exemption from the requirements of Rule 2520 by ensuring actual emissions from the stationary source in every 12 month periods to not exceed the following: \(1 / 2\) the major source thresholds for \(\mathrm{NOX}, \mathrm{VOCs}, \mathrm{CO}\), and \(\mathrm{PM}_{10} ; 50\) tons per year SO ; 5 tons per year of a single HAP; 12.5 tons per year of any combination of HAPs; 50 percent of any lesser threshold for a single HAP as the EPA may establish by rule; and 50 percent of the major source threshold for any other regulated air pollutant not listed in Rule 2530.

\section*{Rule 4101 Visible Emissions}

Rule 4101 states that no person shall discharge into the atmosphere emissions of any air contaminant aggregating more than 3 minutes in any hour which is as dark as or darker than Ringelmann 1 (or \(20 \%\) opacity). The flare is equipped with air assist incinerales produced gas. Propane or LPG will be used for pilot fuel. Visible emissions are not expected to exceed Ringelmann 1 or \(20 \%\) opacity.

The following condition will be included on the flare ATC C-2872-69-0:

\footnotetext{
Flare air-assisi blower shall be maintained and operated tor smokeless combustion, i.e. no visible emissions in excess of \(5 \%\) opacity or \(1 / 4\) Ringelmann except for perlods not to exceed a tolat of 6 minules during any 2 consecutive hours. [District Rules 2201, 4001, and 4311, CFR 60.18 (c)(1)] N
}

\section*{Rule 4102 Nulsance}

Section 4.0 prohibits discharge of air contaminants which could cause injury, detriment. nuisance or annoyance to the public. Public nuisance conditions are not expected as a result of these operations provided the equipment is well maintained. Therefore, compliance with this rule is expected.

The following nuisance prohibition condition is included on the "-0-0 PTO:
(98) No alr contaminani shall be released into the almosphere which causes a public nutsance. [District Rule 4102]

\section*{California Health \& Safety Code 41700 (Health Risk Assessment)}

District Polloy APR 1905 - Risk Management Policy for Permilting New and Modified Sources specifies that for an increase in emissions associated with a proposed new source or modification, the District perform an analysis to determine the possible impact to the nearest resident or worksite.

An HRA is not required for a project with a total facility prioritzation score of less than one. According to the Technical Services Memo for this project (Attachment IX), the total facility prioritization score including this project was greater than one. Therefore, an HRA was required to determine the short-term acute and long-term chronic exposure from this project.

The cancer risk for this project is shown below:
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ HRA Summary } \\
\hline Unit & Cancer Risk & T-BACT Required... \\
\hline C-2872-64 through '-68 & 0.89 per million & No \\
\hline C-2872-69 & 0.241 per million & No \\
\hline
\end{tabular}

To ensure that human health risks will not exceed District allowable levels; the following permit conditions must be included for:

\section*{Units 69-0:}
4. The exhaust stack shall vent vertically upward The vertical exhaust flow shall not be impeded by a rain cap (flapper ok), roof overhang, or any other obstruction. [District Rule 4102]

\section*{Rule 4311 Flares}

Section 5.1 states that flares that are permitted to operate only during an emergency are not subject to the requirements of Sections 5.6 and 5.7 . Section 5.6 states that open flares with flare gas pressure less than 5 psig shall comply with 40 CFR 60.18 . Section 5.7 lists requirement for ground level enclosed flares. The fiare is not an emergency flare and operates with a flare gas pressure less than \(5 \rho \operatorname{pig}\) and so is subiect to Section 5.6. Note Rule 4311 defines enclosed flares as follows:
"a flare composed of multiple gas burners that are grouped in an enclosure, and are staged to operate at a wide range of flow rates"

The subject flare is not enclosed. Section 5.7 is not applicable.
Section 5.2 The flame shall be present at all times when combustible gases are vented through the flare.

Section 5.3 The outlet shall be equipped with an automatic ignition system, or, shall operate with a pilot flame present at all times when combustible gases are vented through the flare. except during purge periods for automatic-rignition equipped flares. The flare is equipped with a continuous propane pilot and nol an automatic ignition system.

Section 5.4: Except for flares equipped with a flow-sensing ignition system, a heat sensing device such as a thermocouple, ultraviolet beam sensor, infrared sensor, or an alternative equivalent device, capable of continuously detecting at least one pilot flame or the flare flame is present shall be installed and operated. The following condition is included on the ATC:

Flare shall be equipped with an operating flow-sensing lgnition system, an operaling heat sensing device such as a thermocouple, ultraviolet beam sensor, infrared sensor, or an equivalent operating device capable of continucusly detecing at least one pilot flame or the flare flame is prasent. [Disirict Rule 4311] N

Section 5.5 Flares that use flow-sensing automatic ignition systems and which do not use a continuous flame pilot shall use purge gas for purging. This section is not applicable as the flare has a continuous pilot.

Section 5.6 Open flares (air-assisted, steam-assisted, or non-assisted) in whtch the flare gas pressure is less than 5 psig shall be operated in such a manner that meets the provisions of 40 CFR 60.18. The requirements of this section shall not apply to Coanda effect flares.

The flare is not an emergency flare and operates with a flare gas pressure less than 5 psig and therefore is subject to Section 5.6.

\section*{Qperational Standards Subpart CFR 40 Subpan 60.18}

Per 40 CFR \(60.112 \mathrm{~b}(\mathrm{a})(3)\) (ii) and 40 CFR 60.113 b (d), the flare will be required to meet the standards contained in 40 CFR 60.18, as this flare is air assisted and the flare gas pressure may be less than 5 psig.
1. 60.18 (c)(1): Flare shall be designed for and operated with no visible emissions as determined by EPA Methad 22, except for períods nol to exceed a total of 5 minutes during any 2 consecutive hours. Visible emissions testing will be required by ATC condition.
2. 60.18 (c)(2): Flare shall be operated with a flame present at all times. Presence of a flame shall be monitored using a thermocouple or equivalent device to delect the presence of a flame. The flare is equipped with a pilot flame monitoring device.

The following conditon included on the ATC requires a continuous pilot flame and smokeless combustion:

Flare outlet shall be equipped with an automatic ignition system, or, shall operale with a pilot flame present at all times when combustble gases are vented through the flare. The pllot need not be present when the flare is isolated for required flare maintenance. (40 CFR 60.18 (c)(2), District Rule 4311. 5.3 ] N

Flare air-assisi blower shall be maintained and operated for smokeless combustion, i.e. no wizible emissions in excess of \(5 \%\) opaclity or \(1 / 4\) Rtngelmann except for perlods nol to exceed a total of 5 minutes during any 2 consecutive hours. [District Rules 2201، 4001, and 4311] N
(650) Demonsiration of compliance with the visible emissions limit of this permit shall be canducted at least annually, using EPA Method 22. The observation period shall be 2 hours. [ 40 CFR \(60.18(f)(1)\) ] N
1. 60.18 (c)(3)(i): Net heating value of the gas being combusted shall be \(300 \mathrm{Btu} / \mathrm{scf}\) or greater for air-assisted flares.
2. 60.18 (c)(5): Air-assisted flares shall be designed and operated with an exit velocity less than the velocity, Vmax, which shall be determined as follows:
```

Vmax = 8.706 + 0.7084(HT)
Where:
Vmax = Maximum permitted velocity (m/s)
HT' = Net heating value (MJ/scm)

```

The following conditions are included on the ATC:
Flares shall only be used with the net heating value of the gas being combusted being 300 Btu/scf or greater if the flare is air-assisted or steam-assisted. [40 CFR 60.18 (c)(3)] N

The net heating walue of the gas being combusted in a flare shall be calculated annually, pursuant to 40 CFR \(60.18(\mathrm{f})(3)\) and using EPA Method 18. ASTM D1946, and ASTM D2382. [40 CFR 60.18 (0)(3-6)] N

Alr-assisted flares shall be operated with an exit veloclty lass than Vmax, as determined by the equation specified In paragraph 40 CFR 60.18 (f)(6). [40 CFR 60.18 (c)(5)] N

The actual exit velocily of a flare shall be detemined by dividing the volumetric flowrate (ln units of standard lemperature and pressure'), as determined by Reference Methods 2, 2A, 2C, or 2 D as appropriate; by the unobslructed (free) cross sectional area of the flare tip. [40 CFR 60.18 (f)(4)] N
1. 60.18 (e): This section requires that the flare be operational when emissions may be vented to the flare. The presence of a continuous pilot flame will ensure that the flare is operational.

The following condition is included on the ATC:
Flares shall be operated with a liame present at all times, and kept in operallon when emissions may be vented to tham. The presence of a flare pilot flame shall be monilored using a thermocouple or any other equlvalent device to detect the presence of a flame. [ 40 CFR 60.18 (c)(2), 60.18 (e), and 60.18 (0)(2)] Y

Record-keeping Requirements Subpars \(60.115 b(d)(2), 60.115 b(\delta)(3):\)
Applicant has proposed the following record-keeping provislons:
1. \(60.115 \mathrm{~b}(\mathrm{~d})(2)\) : Records shall be maintained of all periods when the flare pilot flame is absent.
2. 60.115 b(d)(3): Semi-annual reports of all periods without the presence of a flare pilot flame shall be furnished to the Administrator.

The ATC inciudes the following conditions:
Semi-annual reports of all periods without the presence of a flare pilol Hame shall be fumished to the Disinct Compliance Diviston and EPA. [Diswlet Rule 4001 40CFR 60.115b(d)(3)] N

Records shail be maintained of all periods when the flare pilol flame is absent. [District Rule 40CFR 60.115(d)(2)] N

Section 5.7 This section applies to ground-level enclosed flares. As this flare is an open flare, Section 5.7 does not apply.

Section 5.8 states that flaring is prohibited unless it is consistent with an approved flare minimization plan (FMP), pursuant to Section 6.5, and all commitments listed in that plan have been met. Subsection 6.5 .1 requires the operator of a petroleum refinery flare or any flare that has a flaring capacity of greater or equal to 5.0 MMBtu per hour to submit a fiare minimization pian (FMP).

A flare minimization plan has been submitted with the application.
Section 5.9 addresses Petroleum Refinery SO2 Performance Targets. As this flare will not be operated at a petroleum refinery, this section is not applicable.

Section 5.10 requires the operator of a flare subjec to flare minimization requirements pursuant to Section 5.8 to monitor the vent gas flow to the flare with a flow measuring device or other parameters as specified in the Permit to Operate. The following condition will be included on the ATC:

Gas lines to flare shall be equipped with operalional, wolumetric flow rate indicator. [District Rule 4314]
Section 5.11 requires the operator of a petroleum refinery or a flare with a flaring capacity
 6.9, and 6.10. This flare will not be utilized at a petroleum refinery and does not have a flaring capacity equal to or greater than \(50 \mathrm{MMBt} / \mathrm{hr}\). Therefore, this section is not applicable.

\subsection*{6.0 Administrative Requirements:}

Section 6.1 requires the following records to be retained on-site for a minimum of five years:
- Copy of the compliance determination conducted pursuant to Section 6.4.1
- Copy of the source testing result conducted pursuant to Section 6.4.2
- For flares used during an emergency, record of the duration of flare operation, amount of gas bumed, and the nature of the emergency situation
- Operators claiming an exemption pursuant to Section 4.3 shall record annual throughput, material usage, or other information necessary 10 demonstrate an exemption under that section
- Effective on and after July 1, 2011, a copy of the approved fiare minimization plan pursuant to Section 6.5
- Effective on and after July 1, 2011, where applicable, monitoring data coliected pursuant to Sections \(5.10,6.6,6.7,6.8,6.9\), and 6.10

The following condition wifl ensure compliance with this section:
Section 6.2 .1 requires the operator of a flare subject to the flare minimization plan to notify the District of an unplanned flaring event within 24 hours after the start of the next business day or within 24 hours of their discovery, whichever occurs first. The notification shall include the flare source identification, the start date and time, and the end date and time.

Section 6.2.2 effective on and after July 1. 2012, and annually thereafter, the operator of a flare subject to flare minimization plans pursuant to Section 5.8 must submit an annuel report that summarizes all Reportable Flaring Events.

Section 6.2.3 effective on and after July 1, 2012, and annually thereafter, the operator of a flare subject to flare monitoring requirements pursuant to Sections 5.10. 6.6.6.7,6.8, 6.9, and 6.10, as appropriate, shall submit an annual report to the APCO within 30 days following the end of each 12 month period.

Section 6.3 lists test methods an operator can use to demonstrate compliance with this rule. Compliance with this section is expected.

Secion 6.4 requires records of compliance with 5.6 to be provided to the District upon request and lists further requirements for enclosed flares. This flare is not subject to the requirements of Section 5.6; therefore, Section 6.4 does not apply.

Section 6.5 requires operators of flares \(>5.0 \mathrm{MMBtu} / \mathrm{hr}\) to submit a flare minimization plan (FMP) by July 1, 2010.

CUSA has submitted a flare minimzation plan (FMP) with this application.
Section 6.6 requires the operator of a refinery fiare or any flare greater than \(50 \mathrm{MMBtw} / \mathrm{hr}\) to monitor veni gas composition.

The flare is not operated at a refinery and is less than 50 MMB Bu/hr. Therefore, this section does not apply.

Section 6.7 requires the operator of a refinery flare or any flare greater than \(50 \mathrm{MMBtu} / \mathrm{hr}\) to monilor the volumetric flows of purge and pilot gases with flow measuring devices.

The flare is not operated at a refinery and is less than \(50 \mathrm{MMBlu} / \mathrm{hr}\). Therefore, this section does not apply.

Section 6.8 requires operators of flares with water seals to monitor water level and pressure. This flare is not equipped with a water seal; therefore this section is not applicable.

Section 6.9 requires the operator of a refinery flare or any flare greater than \(50 \mathrm{MMBtu} / \mathrm{hr}\) to comply with general monitoring conditions.

The flare is not operated at a retinery and is less than 50 MMB 俭 hr . Therefore, this section does not apply.

Section 6.10 applies to operators of petroleum refinery flares. This stationary source does not refine petroleum products; therefore this section is not applicable.

Compllance is expected.
Rule 4409 Components at Light Crude Oil Production Facilities, Natural Gas Production Facilities, and Natural Gas Processing Faclilities

Rule 4409 applies, because the 7F facility handles oil with API gravity greater than 30 degrees and a TVP > 1.5 psia. However, all components and equipment subject to Rule 4623 (tanks and TVR system) is exempt from 4409 requirements.

The only equipment being replaced with this project proposal is vessels subject to Rule 4623.
All other equipment (LACT and truck loading rack) is not being modified, therefore no modifications to the currently approved Rule 4409 Operator Management Plan (OMP) are proposed.

The following condition will be placed on the facility wide permit C-2872-0-0:
Permittee shall comply with all applicabie Rule 4409 requirements. (District Rule 4409]
Continued compliance with Rule 4409 is expected.
Rule 4623 Storage of Organic Liquids (5/19/05)
The purpose of this rule is to limit volatile organic compound (VOC) emissions from the storage of organic liquids. This rule applies to any tank with a capacily of 1,100 gallons or greater in which any organic liquid is placed, held, or stored.

The new vessels (tanks and a 3 phase separator) in this project have a capacity greater than 1,100 gallons each. Also, the vessels handle light oil with a TVP up to 4.0 psia. Therefore, this rule is applicable to all of the vessels being installed in this project.

\section*{Section 5.1 VOC Control Systern Requirements}

Section 5.1.1 General VOC Control System Requirements

Except for small producers who are required to comply with the VOC control system requirements in Section 5.1.2, an operator shall not place, hold, or store organic liquid in any tank unless such tank is equipped with a VOC control system identified in Table 1. The specifications for the VOC control system are described in Sections \(5.2,5.3,5.4,5.5\), and 5.6 .

Table 1-General VOC Coutrol System Requirements
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Tank Capacity (Gallous)} & \multicolumn{3}{|l|}{True Vapor Pressure (TVP) of Oremoic Liguid} \\
\hline & 0.5 psia to <1. 5 pria & 1.5 psia to \(<11 \mu \mathrm{sia}\) & \(\geq 11.0\) psia \\
\hline (Group A)
\[
\begin{gathered}
1,100 \text { to } \\
19,800
\end{gathered}
\] & Pressure-vacuum relief valve. or iuteraal floating roof, or exterual floating roof, or vapor recovery systen & Pressure-vacunua relief volve, or imerna floating roof, or external floatiug roof, or vapor recovery system & Pressure vessel or vajor tecovery system \\
\hline (Group B)
\[
\begin{gathered}
>19.800 \text { to } \\
39.600
\end{gathered}
\] & Pressure-vaculum relief valve. or intemal fioating roof, or external floating roof, or vapor recovery system & Intermal floating roof. or exterual floating roof, or vapor recovery systew & Pressure vessel or vapor recovery system \\
\hline \[
\begin{aligned}
& \text { (Group C) } \\
& >39.600 \\
& \hline
\end{aligned}
\] & Luternal flohting roof, or external floating roof, or vapor recovery system & Intemal flonting roof, or external floating roof, or vapor recovery system & Pressure vessel or vapor recovery system \\
\hline
\end{tabular}

All the tanks/vessels in this project are connected to a vapor control system; therefore, the control requirements of Table 1 are satisfied.

The equipment description on every tank/vessel permit will clearly state that the permit unit is vented to the shared TVR system listed on Crude Oil Storage Tank permit C-2872-64-1. The equipment description listed on Permit C-2872-64-1 will identify the specific components of the District approved TVR system (compressor(s), vapor piping, knock out vessel(s) etc.) and identify equipment tied to shared TVR system (tanks, 3 phase separator and truck loading fack).

\section*{Tank C-2872-64-1}

The following conditions will be listed on the tank ATC permit that includes the TVR systern (C-2872-64-1) to ensure compliance with the control requirements of Table 1:

\footnotetext{
Excepl as olherwise provided for on this permil, this tank shall only vent to the vapor control system. (District Rutes 2201 and 4623, 5.1]
}

Except as otherwise provided in this permit, the operator shall ensure that the vapor control system is functional and is eperating as designed. [Districi Rules 2201 and 4623. 5.1]

Vapor control system compressor(s) shali activate before the pressure rellef wawe on any of the unils senved by the vapor control system vents to the atmosphere. [Olstrict Rules 2201 and 4623, 5.1]

\section*{Tanks C-2872-65-1 and 67-1}

The following condition will be listed on tank ATC's C-2872-65-1 and 67-1 to ensure compliance with the control requirements of Table 1:

Except as otherwise provided for on this permit, the vapor lines from this vessel shall oniy vent to the vapor control system listed on C-2872-64. \{Disiflet Rules 2201 and 4623. 5.1]

Three phase separator C-2872-66-1

Except as otherwise provided for on this permil, the vapor lines from this vessel shall only vent to the flare C-2872-69 or DOGGR approved disposal welis. [District Rules 2201 and 4623, 5.1]

Section 5.1 .3 requires all tanks subject to the control requirements of this rule to be maintained in a leak-free condition, except for the certain enumerated components on floating roof tanks and as allowed by Section 5.2 and applicable provisions of Table 3 through Table 5, and Section 5.7.5.4.

The following condition will be listed on ATC's C-2872-64-1, '-65-1, '-66-1 and '-67-1 to ensure compliance with leak-free requirements of Section 5.1.3:

Excepl as otherwise provided on this permit, or in lanks that are connected to this syslem, tank shall be consiructed and maintained fn a leak-free \({ }^{1}\) condition. [District Rule 4623, 5.1.3]

\section*{Section 5.2 Specifications for Pressure-Valve Setting}

This section is not applicable to tanks connected to a vapor control system.

\section*{Section 5.3 Specifications for External Floating Roof Tanks}

The tanks in this project are fixed roof tanks; therefore, this section is not applicable.

\section*{Section 5.4 Specifications for Internal Floating Roof Tanks}

The tanks in this project are fixed roof tanks; therefore, this section is not applicable.

\section*{Section 5.5 Floating Roof Deck Requirements}

The tanks in this project are fixed roof tanks; therefore, this section is not applicable.

\section*{Section 5.6 Specifications for Vapor Recovery Systems}

Section 5.6 .1 requires fixed roof tanks to be fully enclosed and maintained in a leak free condition. An APCO-approved vapor recovery system shall consist of a closed system that

\footnotetext{
"Leak-free" is defined in the l\&W conditions on the permit.
}
collects all VOCs from the storage tank, and a VOC control device. The vapor recovery system shall be maintained in a leak free condition. The VOC control device shall be one of the following:
5.6.1.1 A condensation or vapor return system that connects to one of the following: a gas processing plant, a field gas pipeline, a pipeline distributing Public Utility Commission quallity gas for sale, an injection well for disposal of vapors as approved by the California Department of Conservation, Division of Oil Gas, and Geothermal Resources (DOGGR), or
5.6.1.2 A VOC control device that reduces the inset VOC emissions by at least 95 percent by weight as determined by the test method specified in Section 6.4.6.

The vapor control system connects to DOGGR Injection disposal well(s) or flare C-2872-69-0. The equipment description, on the tank listing the TVR system C -2872-64-1 and three phase separator C-2872-66-1, will indicate collected vapors are discharged to DOGGR approved disposal well(s) or flare C-2872-69-0. This will ensure compliance with Section 5.6. i:

Section 5.6 .2 requires any tank gauging or sampling device on a tank vented to the vapor recovery system to be equipped with a leak-free cover which shall be closed at all times except during gauging or sampling.

The following condition will be listed on the tank and vessel ATC's to ensure compliance with the requirements of Section 5.6.2;
- Except as otherwise provided in this permit, any tank gauging or sampling device on a tank vented to the vapor recovery system shall be equipped with a leak-free cover which shall be closed at all times except during gauging or sampling. [District Rule 4623, 5.6.2]

Section 5.6 .3 requires all piping, valves, and fittings to be constructed and maintained in a leak free condition.

The following condition will be listed on tank and vessel ATC's to ensure compliance with the requirements of Section 5.6.3:
- Except as otherwise provided in this permit, all piping, valves, and fittings shall be constructed and malitained in a leak-free condition. [District Rule 4623, 5.6.3]
\(\frac{\text { Section } 5.7 \text { Voluntary Tank Preventive Inspection, and Maintenance, and Tank Interior }}{\text { Gleaning Pron }}\) Cleaning Program

Inspection and Maintenance:
Chevron has proposed to continue to follow the voluntary Inspection and Maintenance program outlined in the rule. The following conditions, taken from draft District Policy SSP 2215. Organic Liquid Storage Tanks - Voluntary Inspection and Maintenance Program will appear on all of the ATC's in this project:

Operator shall visually inspect tank shell, halches, seals, seams, cable seals, valves, flanges, connectors, and any other piping components directly affixed to the tank and within five feet of the tank at least once per year for liquid leaks, and with a portable hydrocarbon delection instrument conducted in accordance wilh EPA Mathod 21 for gas leaks. Operator shall also visuatly or ultrasonically inspect as appropriate, the external shells and roois of uninsulated tanks for structurat Integrity annually. [District Rule 4623, Table 3]

Upon detection of a liquid leak, defined as a leak rate of greater than or equal to 30 drops per minute, operator shall repair the leak within 8 hours. For leaks with a liquid leak rate of between 3 and 30 drops per minute, the leaking component shall be repaired wilhin 24 hours after detection. [District Rule 4623, Table 3]

Upon delection of a gas leak, defined as a VOC concentration of greater than 10,000 pemv measured in accordance with EPA Method 21, operator shall take one of the following actions; 4) ellminate the leak wilhin 8 hours after detection; or 2) if the leak cannot be ellminated, then minimize the leak to the lowest possible level within 8 hours atter detection by using best maintenance practices. and ellminate the leak within 48 hours after minimization. In no event shall the tolal ilme to minimize and eliminate a leak exceed 56 hours atter detection. [District Rule 4623. Table 3]

Components found to be leaking either liquids or gases shall be immedialely affixed with a tap showing the component to be leaking. Operalor shall mainlain records of the liquid or gas leak detection readings, dateatime the leak was discovered, and dateltime the component was repalred to a leak-free condition. [Disirict Rule 4623 , Table 3]

Leaking components that have been discovered by the operator that have been immedialely tagged and repalred within the timetrames specified in District Rule 4823, Table 3 shall not constitute a violation of this rule. Leaking components as deflned by District Rule 4623 discovered by District staff that ware not previously identified and/or tagged by the operator, andior any leaks that ware not repalred within the timeframes specified in District Rule 4623. Table 3 shall consiltute a violatlon of this rule. [District Rule 4623, Table 3]

If a component type for a given tank is found to leak during an annual inspection, operator shall conduct quartarly inspectons of that component type on the tank or tank system for tour consecutive quarters. if ra components are found to leak after four consecuilve quaners, the operator may revert to annual inspections. [District Rule 4623. Table 3]

Any component found to be feaking on two consecutive annual inspections is in violation of this rule, even if covered under the voluntary inspection and maintenance program. [District Rule 4623, Table 3]

\section*{Tank Interior Cleaning Program:}

Chevion has requested tank-cleaning provisions on the permits. \({ }^{2}\) The following conditions are taken from District Pollcy SSP 2210, Organic Liquid Storage Tanks - Cleaning Requirements and will be included on all of the ATC's in this project:

Permittee shall notify the APCO in wriling at least three (3) days pror to performing tank dagassing and interior lank cleaning activities. Written notification shall include the following: 1) the Permib to Operale number and ohysical location of the tank being degassed, 2) the date and time that tank degassing and cleaning activities will begin, 3) the degassing method, as allowed in inis permit, to be used, 4) the method to be used to clean the tank, including any solvents to be used, and 5) the method to be used to dispose af any removed sludge, including methods that will be used to control emissions from the receiving vessel and emissions during transport. [Disirit Rule 4623, 5.7]

This tank shall be degassed before commencing interior claning by one of the following methoos (i) exhausing VOCs contained in the tank vapor space to an AFCO-approved vapor recovery system until the organic vapor concentration is 5,000 ppmu or less, or is 10 percent or less of the lower explosian limit (LEL). whichever is less; or (2) displacing VOCS contained in the tank vapor space to an APCO-approved vapor recovery system by filling the lank
\({ }^{2}\) The horizontal three phase separator vessel also qualifies es a tank under the Section 3.30 definilion of a tank in this rule: "any statonary container, reservoir, or vessel, in which an organic liquid is placed, held, or stored."
with a suitable liquid until 90 percent or more of the maximum operating level of the tank is filled. Suitable tiquids are organlc liquids having a TVP of less than 0.5 psla, water, dean produced water or produced water derved from chode oll hawing a TVP less than 0.5 psia; or (3) displacing VOCs contained lo the tank vapor space to an APCOapproved vapor recovery system by filling the lank with a suitable gas. Degassing shall conthue until the operato: has achlaved a vapor displacement equivalent to al leasi 2.3 Hmes the tank capaclty. Suitable gases are air, nilrogen, carbon dioxide, or natural gas containing less than 10 percent VOC by welght, (District Rula 4623 , 5.7)

During tank degassing, the operator shall discharge or displace organic vapors contained th the tank vapor space to an APCQ-approved vapor recovery sysiem. [District Rule 4623, 5.7]

To faciltate connection 10 an extemal APCO-approved recovery systern, a suitable tank fitting, such as a man way, may be lemporarlly removed for a perlod of time not to exceed 1 hour. [Disirict Rule 4623, 5.7]

This tank shall be in compliance with the appllcable requirements of District Rule 4623 at all times during draining. degassing, and refilling the tank with an organic tlquid. [District Rule 4623, 5.7]

Alfer a tank has been degassed pursuant to the requirements of this permil, vapor conirol requirements are nol applicable until an organic ilquid is placad, head. or stored in this tank. (Disirict Rule 4623, 5.7)

While perfoming tank cleaning activies, operators may only use the foilowing cleaning agents: desel, soivenis with an inilial bolling point of greater than 302 degrees \(F\), solvents with a vapor pressure of less than 0.5 psia, or solvents wilh 50 grams of VOC per liter or less. [Districi Rule 4623. 5.7]

Sleam cleening shall oniy be allowed at localions where wastewater treatment faclites are limiled, or during the months of December 1hrough Warch. [Dislict Rule 4623, 6.7]

During sludge removal, the operator sitall control emissions from the sludge receiving vessel by operathg an APCOapproved vapor control device that reduces emlssions of organic vapors by al least \(95 \%\). [Dislrict Rule 4623, 5.7]

Pemittee shall only transport removed sludge tn closed, liquid leak-free containers. [District Rule 4B23, 5.7]
Permiltee shall store removed sludge, until final disposal, in vapor leak-fres conlainers, or in tanks compiying with the vapor control requirements of D.strict Rule 4623. Sludge that ts to be used to manufacture roadmbx, as defried in Distria Rule 2020, is not required to be stored In this manner. Roadmix manufacluring operations exempt pursuant to Disitric Rule 2020 shall maintain documentation of thelr compliance wilh Rule 2020, and shall readily make said documentation available for Distret (nspection upon request. [Disirict Rules 2020 and 4623, 5.7]

Since Rule 4623, Table 3 does not explicitly state what records are required from the 18 M conducted, nor is a recordkeeping condition specified in dratt District Policy SSP 2215, Organic Liquid Storage Tanks - Voluntary Inspection and Maintenance Frogram, the following standard 18 M recordkeeping condition found on most oil production tank permits. The rule citation is District Rule 1070, Inspections.

Operator shall matntain an inspecton log containing the following 1) Type of component leaking; 2) Date and time of leak detection, and methoo of detection; 3) Date and time of laak repair, and emission level of racheck after leak is repaired; 4) Method used to minimize the leak to lowest possible level within 8 hours after delectlon. [District Rule 1070]

Section 6.2 TVP and API Gravity Testing of Stored Organic Liquids in Uncontrolled Fixed Roof Tanks

Section 6.2 concerns TVP and API gravily testing of stored organic liquids in uncontrolled fixed roof tanks. This section requires initial and periodic testing of the TVP and API gravity of the oil stored. The API gravity determines which TVP test method is appropriate. This section
also allows for representative testing of the organic liquid in a tank battery provided the enumerated criteria are met.

Section 6.2.3 exempts tanks subject to the control requirements in Table 1 (Group A) or Table 2 (Group A and B) of this rule from the initial and periodic testing requirements. All the tanks in this project are connected to a vapor control system; therefore, none of the tanks are subject to the testing requirements of this rule.

\section*{Section 6.3 Recordkeeping}

This section requires an operator to retain accurate records required by this rule for a period of five years. Records must be made available to the APCO upon request, except for cenain records that need to be submitted as specified in the respective sections (e.g. 6.3.6) below.

Compliance with the record retention requirements of this section is ensured by the following standard permit condition which will appear on all the ATC's in this profect:

The operator shall maintain all records of required monitoring dala and support information for inspection at any lime for a perlod of five years. [District Rule 4623, 8.3)

Section 6.3 .6 requires an operator to submit the records of TVP and API gravily testing conducted in accordance with the requirements of Section 6.2 to the APCO within 45 days after the date of testing. The record should include the tank identification number, PTO number, type of stored organic liquid, TVP and API gravity of the stored organic liquid, test methods used, and a copy of the test results.

None of the tanks in this project are subject to the TVP or API gravity testing requirements; therefore, Section 6.3.6 is not applicable.

\section*{Section 6.4 Test Methods}

The tanks in this project are not subject to periodic API gravity or TVP testing requirements. Therefore, the approved test methods for API gravity and TVP will not be listed on the ATC's.

\section*{Section 7.2 Compllance Schedule}

Any tank that is exempted under Section 4.0 that becomes subject to the VOC control system requirements of this rule through the loss of exemption status shall be in full compliance with this rule on the date the exemption status is lost.

The tanks in this project will be in full compliance with the requirements of this rule. Compliance with the requirements of this rule is expected.

Rule 4624 Organic Liquid Loadlng
The purpose of Rule 4624 is to limit VOC emissions from the transfer of orgenic liquids.

The Rule applies to organic liquid transfer facilities (Defined as any transfer racks and vapor control equipment at a location, including, but not limited to, the stationary organic liouid pump, the hose end connector, and the discharge of the vapor control devices).

The tank and TVR components are subject to Rule 4623. The other liquid piping components are subject to Rule 4409. Therefore there are no Rule 4624 Section 5.9 (leak inspection) requirements for the equipment associated with the truck loading rack.

\section*{Section 5.2 Requirements of Class 2 Loading Facility}

A Class 2 organic liquid transfer facility shall prevent the release to the atmosphere of at least 95 percent by weight of the VOC displaced during organic liquid transfers and use one of the following systems:
A) An organic liquid loading operation shall be bottom loaded, equipped with a vapor collection and control system and the vapors from loading the tank truck, trailer, or railroad tank car shall be routed to the vapor collection and control systern; or
B) The VOC from the transfer operation shall be routed to:
1) A vapor collection and control system; or
2) A fixed roof container that meets the control requirements specified in Rute 4623 (Storage of Organic Liquids); or
3) A floating roof container that meets the control requirements specified in Rule 4623 (Storage of Organic Liquids): or
4) A pressure vessel equipped with an APCO-approved vapor recovery system that meets the control requirements speciffed in Rule 4623 (Storage of Organic Liquids); or
5) A closed VOC emission control system.

CUSA will route the displaced truck vapors to the TVR system serving the tank battery (and truck load out) C-2872-64. In order to be a Class 2 loading operation, less than 20,000 gallons per day can be loaded out. The following condition will appear on the ATC:

Total product loaded into trucks va truck loading rack shall not exceed 19,999 gallons per day. [District Rules 2201 and 4624]

During truck loading. displaced vapors shall be venled to the TVR system listed on tank permit C-2072-64. [District Rule 4624, 5.1.2.1 and 6.2.1.3]

Controlled VOC emissions from truck loading operation shall not exceed \(0.0516 \mathrm{lb}-\mathrm{VOC} 1000\) gallons loaded. [Distriet Rules 2201 and 4824]

Sections 5.3 through 5.5
5.3 A transfer operation utilizing a closed VOC emission control system or utilizing a container that meets the control requirements of Rule 4623 (Storage of Organic Liquids) to meet the emission control requirements of this rule shall demonstrate compliance with Sections 5.1 and 5.2 by complying with the leak inspection requirements of Section 5.9 .
5.4 The vapor collection and control system shall operate such that the pressure in the delivery tank being loaded does not exceed 18 inches water column pressure and six (6) inches water column vacuum. This section shall not apply to the transfer of liquefied petroleum gas.
5.5 All delivery tanks which previously contained organic liquids with a TVP of 1.5 psia or greater at the storage container's maximum organic liquid storage temperature shall be filed only at transfer faclixties satisfying Sections 5.1, 5.2, or 5.4, as applicable.
5.6 The fransfer rack and vapor collection equipment shall be designed, instalied, maintained and operated such that there are no leaks and no excess organic liguid orainage at disconnections.

The following condition will be included on the ATC:

The following condition will appear on the truck loading ATC:
Transfer rack shail te maintained and operated in accordance with the manufiacturer's specifications, and operated such that there are no leaks or excess organic liquid drainage at disconnections as defined herein. [District Rule 4624]

Vapor collection and control system shall operate such that the pressure in the delvery tank being loaded does not exceed 18 inches waler column pressure and six lnches water column vacuum. [Dislrict Rule 4624]

\section*{Section 6.0 Administralive requirements}

\subsection*{6.1 Recordkeeping}

Section 6.1 .3 requires an operator subject to any part of Section 5.0 to keep records of daily liquid throughput and the results of any leak inspections.

Appicant is exempt from the leak inspections required by the rule (Per section 4.4); however throughput record keeping requirements still apply.

The following condition will appear on the truck loading ATC to ensure compliance:
The operator shall maintain reconds of number of dally digconnects and truck load out dally liquid throughput. Records shall be retained for a minimum of five years and made readily avallable durlng normal business hours and submitted upon request to the APCO, CARB, or EPA. [Disiriot Rule 4824]

\subsection*{6.2 Compliance Testing}
6.2.1 By July 20, 2009, the operator of any Class 1 or Class 2 organic liquid transfer facility shall perform an initial source test of the VOC emission control system in accordance with the method prescribed in Section 6.3 .2 to determine compliance with Section 5.1 and 5.2, as applicable.
6.2.1.1 Facilities in existence prior to December 20, 2007 that have performed the test specified in Section \(6.3,2\) within the 60 month period preceding December 20,2007 need not perform an initial source test.
6.2.1.2 The source lesting requirements of Section 6.2 .1 shall not apply to any Class 1 or
Class 2 organic liquid transfer faclity equipped with a closed VOC control system.
6.2.1.3 The source testing requirements of Section 6.2.1 shall not apply to any Class 1 or Class 2 organic liguid transfer facility controlling VOC by routing vapors to:
6.2.1.3.1 A fixed roof container that meets the control requirements specified in Rule 4623 (Storage of Organic Liquids): or
6.2.1.3.2 A floating roof container that meets the control requirements specified in Rule 4623 (Storage of Organic Liquids); or

\subsection*{6.2.1.3.3 A pressure vessel equipped with an APCO-approved vapor recovery system that meets the control requirements specified in Rule 4623 (Storage of Organic Liquids).}

Compliance testing is not required by inclusion the following condition on the ATC:

\begin{abstract}
All llquides and gases from the transfer operation shall be routed to one of the following systems: a vapor collection and control systam; a fixed roof contelner that meats the controi requirements specined in Rule 4623 (Storage of Organic Liquids); a floating roof container that meets the conirol requirements speciried in Rule 4623 (Storage of Organic Liquids); or a pressure vessel equipped with an APCO-approved vapor recovery system that meels the control requirements specified in Rule 4623 (\$torage of Organic Liquids); or a closed VOC emission control system. [Disitict Rules 4623 and 4624]
\end{abstract}

Compliance with this rule is expected.

\footnotetext{
Formatted: Hidden
}

\section*{Rule 4801 Sulfur Compounds}

This rule prohibits the discharge into the atmosphere of any sulfur compounds in excess of \(0.2 \%\) or 2000 ppmv .
This rule is applicable to the flare.

\section*{Assumptions:}

Heating value of flare gas \(=1,000 \mathrm{Btu} / \mathrm{scf}\).
F-Factor for natural gas ; 8578 dscf/MM8tu corrected to 60 deg F ( 40 CFR 60, Appendix 8 )
Maximum proposed sulfur content \(=1.8\) grain \(\mathrm{S} / 100\) scf
1.8 grain \(\mathrm{S} / 100 \mathrm{scf}=30.4\) ppmv \(\mathrm{H}_{2} \mathrm{~S}\)
30.4 ppmv \(\mathrm{H}_{2} \mathrm{~S}=30.4 \operatorname{scf} \mathrm{H}_{2} \mathrm{~S} / 10^{6}\) scf flare gas

PPMV \(\mathrm{H}_{2} \mathrm{~S}=\frac{30,4 \text { scf } \mathrm{H}_{2} \mathrm{~S}}{10^{6} \text { scf flare gas }} \times \frac{1 \text { scf flare gas }}{1,000 \text { Bitu }} \times \frac{10^{0} \mathrm{Blu}}{8,578 \text { scf exhaust }} \times \frac{1 \mathrm{scf} \mathrm{SO}_{2}}{1 \mathrm{scf} \mathrm{H}_{2} \mathrm{~S}} \times 10^{\mathrm{g}} \mathrm{ppm}\)
\(=3.5\) ppmv \(\mathrm{SO}_{2}\)
\(3.5 \mathrm{ppmv}<2,000\) ppmv; therefore, complance with District Rule 4801 is expected. The following condition will ensure compliance with this rule:

Sulfur content of gas flared shall not exceed 1.8 grain-S/100 scf. [District Rules 2201 and 4801]
Calfornia Health \& Safety Code 42301.6 (School Notice)
This sile is not located within 1,000 feet of a school. Therefore, pursuant to California Health and Safety Code 42301.6, a school notice is not reguired.

\section*{Callfornla Environmental Quality Act (CEQA)}

CEQA requires each public agency to adopt objectives, criteria, and specific procedures consistent with CEQA Statutes and the CEQA Guidelines for administering its responsibilities under CEQA, including the orderly evaluation of projects and preparation of environmental documents. The District adopted its Environmental Reviow Guidelines (ERG) in 2001. The basic purposes of CEQA are to:
- Inform governmental decision-makers and the pubfic about the potential, significant environmental effects of proposed activities;
- Identify the ways that environmental damage can be avoided or significantly reduced:
- Prevent significant, avoldable damage to the environment by requiring changes in projects through the use of alternatives or mitigation measures when the governmental agency finds the changes to be feasible; and
- Disclose to the public the reasons why a governmental agency approved the project in the manner the agency chose if significant environmental effects are involved.

The subject unit will combust natural gas from facility C-2872 which is subject to ARB's Cap and Trade regulation. Consistent with CCR \(\$ 15064(\mathrm{~h})(3)\), the District finds that compliance with ARB's Cap and Trade regulation would avold or substantially lessen the impact of project-specific GHG emissions on global climate change. The District therefore concludes that projects occurring at facilities subject to ARB's Cap and Trade regulation would have a less than significant individual and cumulative impact on global climate change.

\section*{X. Recommendation}

Compliance with all applicable rules and regulations is expected. Pending a successful public noticing period, issue Authority's to Construct C-2872-64-1, 65-1, 66-1, 67-1, 68-1 and 69-0 subject to the permit conditions on the attached draft Authorities to Construct in Attachment \(X\).

\section*{X. Billing Information}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{5}{|c|}{ Annual Permit Fees } \\
\hline Permit Number & Fee Schedule & Fee Description & Annual Fee \\
\hline C-2782-64-1 & \(3020-05-\mathrm{C}\) & 42,000 GALLONS (1,000 BBL) & \(\$ 135.00\) \\
\hline C-2782-65-1 & \(3020-05-\mathrm{C}\) & 42,000 GALLONS (1,000 BBL) & \(\$ 135.00\) \\
\hline C-2782-66-1 & \(3020-05-\mathrm{A}\) & 12,600 GALLONS (300 BBL) & \(\$ 75.00\) \\
\hline C-2782-67-1 & \(3020-05-\mathrm{C}\) & 42,000 GALLLONS (1,000 8BL) & \(\$ 135.00\) \\
\hline C-2782-68-1 & \(3020-01-\mathrm{A}\) & Up to 25 hp (Electric molor hp) & \(\$ 87.00\) \\
\hline C-2782-69-0 & \(3020-02-\mathrm{H}\) & 49 MMBtu/hr Flare & \(\$ 1030.00\) \\
\hline
\end{tabular}

\section*{Attachments}

I: ATCs C-2872-64-0 through '-68-0 and PTOs C-2872-1-1 through '-4-1 and '.7-1 (to be cancelled)
II: Location Map
III: Manufacturer's Specifications on Flare
IV: Fugitive Emissions Calculations
V: Truck Load out Emissions
VI: Emissions Profiles
VII: BACT Guidelines
VIII:BACT Analyses
IX: HRA and AAQA
X: Draft ATCs

\title{
ATTACHMENT I \\ ATCs C-2872-64-0 through '-68-0 and PTOs C-2872-1-1 through ' \(-4-1\) and ' \(-7-1\) (to be cancelled)
}

\title{
San Joaquin Valley \\ Air Pollution Control District
}

EXPIRATION DATE: 10/31/2017
SECTION: 7F TOWNSHIP: 19S RANGE: 15E
EQUIPMENT DESCRIPTION:
5,000 BBL FIXED-ROOF, 3-RING BOLTED, CLARIFIER TANK \#T-500

\section*{PERMIT UNIT REQUIREMENTS}
1. No air contaminant shall be released into the atmosphere which causes a public nuisance. [District Rule 4102]
2. The cank shall be equipped with a vapor recovery system consisting of a closed vent system that collects all VOCs from the storage tank, and a VOC control device. The vapor recovery system shall be APCO-approved and maintained in leak free condition. The VOC control device shall be either of the following: a vapor return or condensation system that connects to a gas pipeline distribution system, or an approved VOC destruction device that reduces the inlet VOC emissions by at least \(95 \%\) by weight as determined by the test method specified in Section 6.4.7. [District Rule 4623]
3. Except as otherwise provided in this permit all piping, valves, and fittings shall be constructed and maintained in a leak free condition. [District Rule 4623]
4. Any tank gauging or sampling device on a tark vented to the vapor recovery system shall be equipped with a gas-tight cover which shall be closed at all times except during gauging or sampling. [District Rule 4623]
5. Fugitive VOC emission rate, calculated using the Oil and Gas Production Operations Average Emission Factors, U.S. EPA Protocol for Equipment Leak Emission Estimates, Table 2-4 (EPA-453/R-95-017) from the total number of vapor components associated with this permit unit shall not exceed \(6.9 \mathrm{lb} / \mathrm{day}\). [District Rule 2201]
6. Permittee shall maintain accurate component count for this permit unit according to EPA's "Protocol for Equipment Leak Emission Estimate," Table 2-4, Oil and Gas Production Operations Average Emissions Factors. Permittee shall update such records when new components are approved and installed. [District Rule 2201]
7. Permittee shall notify the APCO in writing at least three (3) days prior to performing tank degassing and interior tank cleaning activities. Written sotification shall include the following: 1) the Permit to Operate number and physical location of the tank being degassed, 2) the date and time that tank degassing and cleaning activities will begin, 3) the degassing method, as allowed in this permit, to be used, 4) the method to be used to clean the tank, including any solvents to be used, and 5) the method to be used to dispose of any removed sludge, including methods that will be used to control emissions from the receiving vessel and emissions during transport. [District Rule 4623]
8. This tank shall be degassed before commencing interior cleaning by following one of the following options: 1) exhausting VOCs contained in the tank vapor space to an APCO-approved vapor recovery system until the organic vapor concentration is 5,000 ppmy or less, or is 10 percent or less of the lower explosion limit (LEL), whichever is less, or 2) by dispiacing VOCs contained in the tank vapor space to an APCO-approved vapor recovery system by filling the tank with a suitable liquid until 90 percent or more of the maximum operating level of the tank is filled. Suitable liquids are organic liquids having a TVP of less than 0.5 psia, water, clean produced water, or produced water derived from crude oil having a TVP less than 0.5 psia, or 3 ) by displacing VOCs contained in the tank vapor space to an APCO-approved vapor recovery system by filling the tank with a suitable gas. Degassing shall continue until the operator has acbieved a vapor displacement equivalent to at least 2.3 times the tank capacity. Suitable gases are air, nitrogen, carbon dioxide, or natural ges containing less than 10 percent VOC by weight. [District Rule 4623]

Facilly Name: CHEVRON USA, INC.
Location: LGGHT' OIL PRODUCTION,FRESNO COUNTY, CA

9. During tank degassing, the operator shall discharge or displace organic vapors contained in the tank vapor space to an APCO-approved vapor recovery system. [District Rule 4623]
10. To facilitate contection to an external APCO-approved recovery system, a suitable tank fitting, such as a manway, may be temporarily removed for a period of time not to exceed I hour. [District Rule 4623]
11. This tank shall be in compliance with the applicable requirements of District Rule 4623 at all times during draining, degassing, and refilling the tank with an organic liquid having a TVP of 0.5 psia or greater. [District Rule 4623]
12. After a tank has been degassed pursuant to the requirements of this pemit, vapor control requirements are not applicable watil an organic liquid having a TVP of 0.5 psia or greater is placed, held, or stored in this tank. [District Rule 4623]
13. While performing tank cleaning activities, operators may only use the following cleaning agents: diesel, solvents with an initial boiling point of greater than 302 degrees \(F\), solvents with a vapor pressure of less than 0.5 psia, or solvents with 50 grams of VOC per liter or less. [District Rule 4623]
14. Steam clearing shall only be allowed at locations where wastewater treatment facilities are limited, or during the months of December through March. [District Rule 4623]
15. During sludge removal from a tank containing an organic liquid with a tvp of 1.5 psia or greater, the operator shall control emissions from the sludge receiving vessel by operating an APCO -approved vapor control device that reduces emissions of organic vapors by at least 95\%. [District Rule 4623]
16. Permittee shall only transport removed sludge from a tank containing an organic liquid with a TVP of 1.5 psia or greater in closed, hquid leak-free containers. [District Rule 4623]
17. Pemmittee shall store removed sludge from a tank containing an organic liquid with a TVP of 1.5 psia or greater, until final disposal, in vapor leak-free containers, or in tanks complying with the vapor control requirements of District Rule 4623. Sludge that is to be used to manufacture roadmix, as defined in District Rule 2020, is not required to be stored in this manner. Intermediate storage of sludge from a tank containing an organic liquid with a TVP of 1.5 psia or greater while determining suitability for use as roadmix must be in vapor leak free containers or in tanks complying with the vapor control requirements of Rule 4623. Roadmix manafacturing operations exempt pursuant to District Rule 2020 shall maintain documentation of their compliance with Rule 2020, and shall readily make said documentation available for District inspection upon tequest. [District Rules 2020 and 4623]
18. Operator shall maintain an inspection log containing the following 1) Type of component leaking; 2) Date and time of leak detection and method of detection; 3) Date and time of leak repair and emission level of recheck atter leak is repaired; 4) Method used to minimize the leak to lowest possible level within 8 hours after detection. [District Rule 2080]
19. This permit authorizes tank cleaning that is not the result of breakdowns or poor maintenance as a routine maintenance activity. [District Rule 2080]
20. Operator shall visually inspect tank shell, hatches, seals, seams, cable seals, valves, flanges, connectors, and any other piping components directly affixed to the tank and within five feet of the tank at least once per year for liquid leaks, and with a portable hydrocarbon detection instrument conducted in accordance with EPA Method 21 for gas leaks. Operator shall also visually or ultrasonically inspect as appropriate, the external shells and roofs of uninsulated tanks for structural incegrity annually. [District Rule 4623]
21. Upon detection of a liquid leak, defined as a leak rate of greater than or equal to 30 drops per minute, operator shall repair the leak within 8 hours. For leaks with a liquid leak rate of between 3 and 30 drops per minute, the leaking component shall be repaired within 24 hours after detection. [District Rule 4623]
22. Upon detection of a gas leak, defined as a VOC concentration of greater than 10,000 ppmv measured in accordance with EPA Method 21, operator shall take one of the following actions: 1) eliminate the leak within 8 hours after detection; or 2 ) if the leak cannot be eliminated, then minimize the leak to the lowest possible level within 8 hours after detection by using best maintenance practices, and eliminate the leak within 48 hours after minimization. In no event shall the total time to minimize and eliminate a leak exceed 56 hours after detection. [District Rule 4623]

\footnotetext{
PERMIT UNIT REQUIREMENTS CONTINUE ON NEXT PAGE
These terms and conditions are part of the Facility-wide Fermit to Operate.
}

Facllly Name: CMEVRON USA, INC
Locallont LIGHT OIL PRODUCTION,FRESNO COUNTY, CA

23. Components found to be leaking either liquids or gases shall be immediately affixed with a tag showing the component to be leaking. Operator shall maintain records of the liquid or gas leak detection readings, date/time the leak was discovered, and date/time the component was repaired to a leak-free condition. [District Rule 4623]
24. Leaking components that have been discovered by the operator that have been immediately tagged and repaired within the timeframes specified in District Rule 4623, Table 3 shall not constitute a violation of this rule. Leaking components as defined by District Rule 4623 discovered by District staff that were not previously identified and/or tagged by the operator, and/or any leaks that were not repaired within the timeframes specified in District Rule 4623, Table 3 shall constitute a violation of this rule. [District Rule 4623]
25. If a component type for a given tank is found to leak during an annual inspection, operator shall conduct quarterly inspections of that component type on the tank or tank system for four consecutive quarters. If no components are found to leak after four consecutive quarters, the operator may revert to annual inspections. [District Rule 4623]
26. Any component found to be leaking on two consecutive annual inspections is in violation of this rule, even if covered under the voluntary inspection and maintenance program. [District Rule 4623]
27. All records skall be maintained and retained on-site for a pcriod of at least \(\$\) ycars and shall be made available for District inspection upon request. [District Rule 1070]

\title{
San Joaquin Valley Air Pollution Control District
}

SECTION: 7F TOWNSHIP: 19S RANGE: 15E

\section*{PERMIT UNIT REQUIREMENTS}
1. No air contaminant shall be released into the atmosphere which causes a public nuisancc. [District Rule 4102]
2. The tank shall be equipped with a vapor recovery system consisting of a closed vent system that collects all VOCs from the storage tank, and a VOC control device. The vapor recovery system shall be APCO-approved and maintained in leak free condition. The VOC control device shall be either of the following: a vapor return or condensation system that connects to a gas pipeline distribution system, or an approved VOC destruction device that reduces the inler VOC emissions by at least \(95 \%\) by weight as determined by the test method specified in Section 6,4.7. [District Rule 4623]
3. Except as otherwise provided in this permit all piping, valves, and fittings shall be constructed and maintained in a leak free condition, [District Rule 4623]
4. Any tank gauging or sampling device on a tank vented to the vapor recovery system shall be equipped with a gas-tight cover which shall be closed at all times except during gauging or sampling. [District Rule 4623]
5. Fugitive VOC emission rate, calculated using the Oil and Gas Production Operations Average Emission Factors, U.S. EPA Protocol for Equipment Leak Emission Estimates, Table 2-4 (EPA-453/R-95-017) from the total number of vapor components associated with this permit unit shall not exceed \(7.6 \mathrm{lb} / \mathrm{day}\). [District Rule 2201]
6. Permittee shall maintain accurate component count for this permit unit according to EPA's "Protocol for Equipment Leak Emission Estmate," Table 2-4, Oil and Gas Production Operations Average Emissions Factors. Permittes shatl update such records when new components are approved and installed. [District Rule 2201]
7. Permittee shall notify the APCO in writing at least three (3) days prior to performing tank degassing and interior tank cleaning activities. Written notification shall include the following: 1) the Permit to Operate number and physical location of the tank being degassed, 2) the date and time that tank degassing and cleaning activities will begin, 3) the degassing method, as allowed in this permit, to be used, 4) the method to be used to clean the tank, including any solvents to be used, and S) the method to be used to dispose of any removed sludge, inciuding methods that will be used to control emissions from the receiving vessel and emissions during transport. [District Rule 4623]
8. This tank shall be degassed before commencing interior cleaning by following one of the following options: 1) exhausting VOCs contained in the tank vapor space to an APCO-approved vapor recovery system until the organic vapor concentration is 5,000 ppmv or less, or is 10 percent or less of the lower expiosion limit (LEL), whichever is less, or 2) by displacing VOCs contained in the tank vapor space to an APCO-approved vapor recovery system by filling the tank with a suitable tiquid until 90 percent or more of the maximum operating level of the tank is filled. Suitable liquids are organic liquids having a TVP of less than 0.5 psia , water, clean produced water, or produced water derived from crude oil having a TVP less than 0.5 psia, or 3) by displacing VOCs contained in the tank vapor space to an APCO-approved vapor recovery system by filling the tank with a suitable gas. Degassing shall continue until the operator has achieved a vapor displacement equivalent to at least 2.3 times the tank capacity. Suitable gases are air, nitrogen, carbon dioxide, or natural gas containing less than 10 percent VOC by weight. [District Rule 4623]

PERMT UNIT REQUIREMENTS CONTINUE ON NEXT PAGE
These terms and conditions are part of the Facillty-wide Permit to Operate.
Facility Name: CHEVRON USA, INC.
LOCEtDN: LIGHT OIL PRODUCTION,FRESNO COUNTY, GA

9. During tank degassing, the operator shall discharge or displace organic vapors contained in the tank vapor space to an APCO-approved vapor recovery system. [District Rule 4623]
10. To facilitate connection to an external APCO-approved recovery system, a suitable tank fitting, such as a manway, may be temporarily removed for a period of time not to exceed 1 hour. [District Rule 4623]
11. This tank shall be in compliance with the applicable requirements of District Rule 4623 at all times during draining, degassing, and refilling the tank with an organic liquid having a TVP of 0.5 psia or greater. [Dislrict Rule 4623]
12. After a tank has been degassed pursuant to the requirements of this permit, vapor control requirements are not applicable until an organic liquid having a TVP of 0.5 psia or greater is placed, held, or stored in this tank. [Distriet Rule 4623]
13. While performing tank cleaning activities, operators may only use the following cleaning agents: diesel, solvents with an initial boiling point of greater than 302 degrees \(F\), solvents with a vapor pressure of less than 0.5 psia, or solvents with 50 grams of VOC per liter or less. [District Rule 4623]
14. Steam cleaning shall only be allowed at locations where wastewater treatment facilities are limited, or during the months of December through March. [District Rule 4623]
15. During sludge removal from a tank containing an organic liquid with a tvp of 1.5 psia or greater, the operator shali control emissions from the sludge receiving vessel by operating an APCO-approved vapor control device that reduces emissions of organic vapors by at least 95\%. [District Rule 4623]
16. Permittee shail only transport removed sjudge from a tank containing an organic liquid with a TVP of 1.5 psia or greater in closed, liquid leak-free containers. [District Rule 4623]
17. Permittce shall store removed sludge from a tank containing an organic liquid with a TVP of 1.5 psia or greater, until final disposal, in vapor leak-free containers, or in tanks complying with the vapor control requirements of District Rule 4623. Sludge that is to be used to manufacture roadmix, as defined in District Rule 2020, is not required to be stored in this manner. Intermedjate storage of sludge from a tank containing an organic liquid with a TVP of 1.5 psia or greater while determining suitability for use as roadmix must be in vapor leak free containers or in tanks complying with the vapor control requirements of Rule 4623 . Roadmix manufacturing operations exempt pursuant to District Rule 2020 shall maintain documentation of their compliance with Rule 2020, and shall readily make said documentation available for District inspection upon request. [District Rules 2020 and 4623]
18. Operator shall maintain an inspection log containing the following 1) Type of component leaking; 2) Date and time of leak detection and method of detection; 3) Date and time of leak repair and emission level of recheck after leak is repaired; 4) Method used to minimize the leak to lowest possible level within 8 hours after detection. [District Rule 2080]
19. This permit authorizes tank cleaning that is not the result of breakdowns or poor maintenance as a routine maintenance activity. [District Rule 2080]
20. Operator shali visually inspect tank shell, batches, seals, seams, cable seals, valves, flanges, connectors, and any other piping components directly affixed to the tank and within five feel of the tank at least once per year for liquid leaks, and with a portable hydrocarbon detection instrument conducted in accordance with EPA Method 21 for gas leaks. Operator shall also visually or ultrasonically inspect as appropriate, the external shells and roofs of uninsulated tanks for structural integrity annually. [District Rule 4623]
21. Upon detection of a liquid leak, defined as a leak rate of greater than or equal to 30 drops per minute, operator shall repair the leak widin 8 hours. For leaks with a liquid leak rate of berween 3 and 30 drops per minute, the leaking component shall be repaired within 24 hours after detection. [District Rule 4623]
22. Upon detection of a gas leak, defined as a VOC concentration of greater than 10,000 ppmy measured in accordance with EPA Method 21 , operator shall take one of the following actions: 1) eliminate the leak within 8 hours after detection; or 2) if the leak cannot be eliminated, then minimize the leak to the lowest possible level within 8 hours after detection by using best maintenance practices, and eliminate the leak within 48 hours after minimization. ln no event shall the total time to minimize and eliminate a leak exceed 56 hours after detection. [District Rule 4623]
23. Components found to be leaking either liquids or gases shall be immedjately affixed with a tag showing the component to be leaking. Operaior shall maintain records of the liquid or gas leak detection readings, date/time the leak was discovered, and date/time the component was repared to a leak-free condition. [District Rule 4623]
24. Leaking components that have been discovered by the operator that have been immediately tagged and repaired within the timeframes specifled in District Rule 4623 , Table 3 shall not constitute a violation of this rule. Leaking components as defined by District Rule 4623 discovered by District staff that were not previousiy identified and/or tagged by the operator, and/or any leaks that were not repaired within the timeframes specified in District Rule 4623, Table 3 shall constitute a violation of this rule. [District Rule 4623]
25. If a component type for a given tank is found to leak during an annual inspection, operator shall conduct quarterly inspections of that component type on the tank or tank system for four consecutive quarters. If no components are found to leak after four consecutive guarters, the operator may revert to annual inspections. [District Rule 4623]
26. Any component found to be leaking on two consecutive annual inspections is in violation of this rule, even if covered under the voluntary inspection and maintenance program. [District Rule 4623]
27. Ail records sball be maintained and retained on-site for a period of at least 5 years and shall be made available for District inspection upon request. [District Rule 1070]

\title{
San Joaquin Valley Air Pollution Control District
}
1. No alr contaminant shall be released into the atmosphere which causes a public nuisance. [District Rule 4102]
2. The tank shall be equipped with a vapor recovery system consisting of a closed vent system that collects all VOCs from the storage tank, and a VOC control device. The vapor recovery system shall be APCO-approved and maintained in leak free condition. The VOC control device shall be either of the following: a vapor return or condensation system that connects to a gas pipeline distribution system, or an approved VOC destruction device that reduces the inlet VOC emissions by a: least \(95 \%\) by weight as determined by the test method specified in Section 6.4.7. [District Rulc 4623]
3. Except as otherwise provided in this permit all piping, valves, and fittings shall be constructed and maintained in a leak free condition. [District Rule 4623]
4. Any tank gauging or sampling device on a tank vented to the vapor recovery system shall be equipped with a gas-tight cover which shall be closed at all times except during gauging or sampling. [District Rule 4623]
5. Fugitive VOC emission rate, calculated using the Oif and Gas Production Operations Average Emission Factors, U.S. EPA Protocol for Equipment Leak Emission Estimates, Table 2-4 (EPA-453/R-95-017) from the total number of vapor components associated with this permit unit shall not exceed 12.0 lb /day. [District Rule 2201]
6. Permittee shall maintain accurate component count for this permit unit according to EPA's "Protocol for Equipment Leak Emission Estimate," Table 2-4, Oil and. Gas Production Operations Average Emissions Factors. Permittee shall update such records when new components are approved and instailed. [District Rule 2201]
7. Permituee shali notify the APCO in writing at least three (3) days prior to performing tank degassing and interior tank cleaning activities. Written notification shall include the following: 1) the Permit to Operate number and physica! location of the tank being degassed, 2) the date and (ime that tank degassing and cleaning activities will begin, 3) the degassing method, as allowed in this permit, to be used, 4) the method to be used to clean the tank, including any solvents to be used, and 5) the method to be used to dispose of any removed sludge, including methods thet will be used to control emissions from the receiving vessel and emissions during transport. [District Rule 4623]
8. This tank shat be degassed before commencing interior cleaning by following one of the following options: 1) exhausting VOCs contained in the tank vapor space to an APCO-approved vapor recovery system until the organic vapor concentration is \(\$, 000\) Ppmv or less, or is 10 percent or less of the lower explosion limit (LEL), whichever is less, or 2) by displacing VOCs contained in the tank vapor space to an APCO-approved vapor recovery system by filling the tank with a suitable liguid until 90 percent or more of the maximum operating level of the tank is filled. Suitable liquids are organic liquids having a TVP of less than 0.5 psia, water, clean produced water, or produced water derived from crude oil having a TVP less than 0.5 psia, or 3 ) by displacing VOCs contained in the tank vapor space to an A.PCO-approved vapor recovery system by filling the tank with a suitable gas. Degassing shall continue until the operator has achieved a vapor displacement equivalent to at least 2.3 times the tank capaciry. Suitable gases are air, nitrogen, carbon dioxide, or natural gas containing less than 10 percent VOC by weight. [District Rule 4623]
9. During tank degassing, the operator shall discharge or displace organic vapors contained in the tank vapor space to an APCO-approved vapor recovery system. [District Rule 4623]
10. To facilitate connection to an external APCO-approved recovery system, a suitable tank fitting, such as a manway, may be temporarlly removed for a period of time not to exceed l hour. [District Rule 4623]
11. This tank shall be in complance with the applicable requirements of District Rule 4623 at all times during draining, degassing, and refilling the tank with an organic liquid having a T'VP of 0.5 psia or greater. [District Rule 4623]
12. After a tank has been degassed pursuant to the requirements of this permit, vapor control requirements are not applicable unti] an organic liquid having a TVP of 0.5 psia or greater is placed, held, or stored in this tank. [District Rule 4623]
13. While performing tank cleanting activities, operators may only use the following cleaning agents: diesel, solvents with an initial boiling point of greater than 302 degrees \(F\), solvents with a vapor pressure of less than 0.5 psia, or solvents with 50 grams of VOC per liter or less. [District Rule 4623]
14. Steam cleaning shatl only be allowed at locations where wastewater treatment facilities are limited, or during the months of December through March. [District Rule 4623]
15. During sludge removal from a tark containing an organic liquid with a tvp of 1.5 psia or greater, the operator shall control emissions from the sludge receiving vessel by operating an APCO-approved vapor control device that reduces emissions of organic vapors by at least 95\%. [District Rule 4623]
16. Permittee shall only transport removed sludge from a tank containing an organic liquid with a TVP of 1.5 psia or greater in closed, liquid leak-free containers. [District Rule 4623]
17. Permittee shall store removed sludge from a tank containing an organic liquid with a TVP of I. 5 psia or greater, unti! final disposal, in vapor leak-free containets, of in tanks complying with the vapor control requirements of District Rule 4623. Sludge that is to be used to manufacture roadmix, as defined in District Rule 2020, is not required to be stored in this manner. Intemediate storage of sludge from a tank containing an organic liquid with a TVP of 1.5 psia or greater while determining suitability for use as roadmix must be in vapor leak free containers or in tanks complying with the vapor control requirements of Rule 4623. Rondmix manufacturing operations exempt pursuant to District Rule 2020 shall maintain documentation of their compliance with Rule 2020, and shall readily make said documentation available for District inspection upon request. [District Rules 2020 and 4623]
18. Operator shall maintain an inspection log containing the following 1) Type of component leaking; 2) Date and time of leak detection and method of detection; 3) Date and time of leak repair and emission level of recheck after leak is repaired; 4) Method used to minimize the leak to lowest possible level within 8 hours after detection. (District Rule 2080]
19. This permit authorizes tank cleaning that is not the result of breakdowns or poor maintenance as a routine maintenance activity. [District Rule 2080]
20. Operator shall visually inspect tank shelf, hatches, seals, seams, cable seals, valves, flanges, connectors, and any other piping components directly affixed to the tank and within five feet of the tank at least once per year for liquid leaks, and with a portable bydrocarbon detection instrument conducted in accordance with EPA Method 2) for gas leaks. Operator shall also visually or ultrasonically inspect as appropriate, the external shells and roofs of uninsulated tanks for structural integrity atnually. [District Rule 4623]
21. Upon detection of a liquid leak, defined as a leak rate of greater than or equal to 30 drops per minute, operator shall repair the leak within 8 houts. For leaks with a liquid leak rate of between 3 and 30 drops per minte, the leaking component shall be repaired within 24 hours afler detection. [District Rule 4623]
22. Upon detection of a gas leak, defined as a VOC concentration of greater than 10,000 ppmv measured in accordance with EPA Method 21, operator shall take one of the following actions: 1) eliminate the leak within 8 hours after detection; or 2) if the leak cannot be eliminated, then minimize the leak to the lowest possible level within 8 hours after detection by using best maintenance practices, and eliminate the leak within 48 hours after minimization. In no event shall the total time to minimize and eliminate a leak exceed 56 hours after detection. [District Rule 4623]

PERMAT UNIT REQUIREMENTS CONTINUE ON NEXT PAGE
These terms and conditions are part of the Facilty-wide Permit to Operate.
Facility Namb: CMEVRON USA INC.
LOMATOR: LIGHT OLL PRODUCTION,FRESHO COUNTY, CA

23. Components found to be leaking either liquids or gases shall be immediately affixed with a tag showing the component to be leaking. Operator shall maintain records of the liquid or gas leak detection readings, date/time the leak was discovered, and date/time the component was repaired to a leak-free condition. [District Rule 4623]
24. Leaking components that have been discovered by the operator that have been immediately tagged and repaired within the timeframes specified in District Rule 4623, Table 3 shall not constitute a violation of this rule. Leaking components as defined by District Rule 4623 discovered by District staff that were not previously identified and/or tagged by the operator, and/or any leaks that were not repaired within the timeframes specified in District Rule 4623, Table 3 shall constitute a violation of this rule. [District Rule 4623]
25. If a component type for a given tank is found to leak during an annual inspection, operator shall conduct quarterly inspections of that component type on the tank or tank system for four consecutive quarters. If no components are found to leak after four consecutive quarters, the operator may revert to annual inspections. [District Rule 4623]
26. Any component found to be leaking on two consecutive annual inspections is in viclation of this rule, even if covered under the voluntary inspection and maintenance program. [District Rule 4623]
27. All records shall be maintained and retained on-site for a period of at least 5 years and shall be made available for District inspection upon request. (District Rule 1070]

\title{
AUTHORITY TO CONSTRUCT
}

PERMIT NO: C-2872-68-0
ISSUANCE DATE: 01/16/2014
LEGAL OWNER OR OPERATOR: CHEVRON USA, INC. MAdLING ADDRESS: PO BOX 1392 BAKERSFIELD, CA 93302

LOCATION:
LIGHT OIL PRODUCTION
FRESNO COUNTY, CA
SECTION: 7 TOWNSHIP: 19 S RANGE: 15E
EQUIPMENT DESCRIPTION:
CLASS 2 ORGANIC LIQUID TRUCK LOADING OPERATION WITH VAPOR RETURN PIPING CONNECTED TO TANK VAPOR CONTROL SYSTEM LISTED ON PERMIT C-2872-64

\section*{CONDITIONS}
1. No air contaminant shall be released into the atmosphere which causes a public nuisance. [District Rele 4102]
2. The unit shall always operate at least 805 ft away from the nearest receptor. [District Rule 4102]
3. During truck loading, displaced vapors shall be vented to the TVR system listed on tank permit C-2872-64. [District Rule 4624, 5.l and 6.2]
4. Vapor collection and control system shall operate such that the pressure in the delivery tank being loaded does not exoeed 18 inches water column pressure and six inches water column vacuum. [District Rule 4624]
5. Total product loaded into trucks via truck loading rack sinall not exceed 19,999 gallons per day. [District Rules 220] and 4624]
6. Controlled VOC emissions from truck loading operation shal] not exceed \(0.26 \mathrm{lb}-\mathrm{VOC} / 000\) gallons loaded. [District Rules 2201 and 4624]
7. Total number of disconnects shall not exceed S per day. [District Rule 2201]
8. During hose disconnects the maximum liquid spillage for liquids shall not exceed 8 milliliters/disconnect based on an average from 3 consecutive disconnects. [District Rule 2201 and 4624]
9. Liquid components shall comply with Rule 4409 requirements. [District Rule 4409]

CONDTTIONS CONTINUE ON NEXT PAGE
YOU MUST NOTIFY THE OISTRICT COMPLIANCE DVISION AT (659) 230-5日50 WHEN CONSTRUCTION IS COMPLETED AND PRIOR TO OPERATING THE EQUIPMENT OR MODIFICATIONS AUTHORIZED BY THIS AUTHORITY TO CONSTRUCT. This IS NOT a PERMIT TO OPERATE. Approwal or denial of a PERMIT TO OPERATE will be made afler an inspecion to werffy that the equipment has baen construclad In accordance wiln the approved plans, specificailons and conditons of this Authorlly to Construct, and to delermine If lhe equipment can be operated in compliance with ail Rulas and Regulations of the San Jobquin Valley Unified Alr Pollulion Control District. Unless construction has commenced pursuant lo Rule 2050, thls A inthority to Construct shall expire and appllcallon shall be cancelled two years from the date of lasuance. The applicant is responstble for complying with all laws, ordinances and regulations of all other govemmental agenclas which may pertain to ine above aquipment.
Sayed Sadredin, Exacutive Director/APCO

\footnotetext{
Arnaus Mariollet, Dlrector of Permit Services

Central Regional Office - 1990 E. Gettysburg Ave. • Fresno, CA 93726 - (559) 230-5900 - Fax (559) 230-6061
}
10. Components subject to Rule 4409 and 4623 (vapor components tied to TVR system listed on C-2872-64) are exempt from the leak inspection requirements of Rule 4624. [District Rule 4624]
11. The operator shall maintain records of truck load out daily liquid throughput and number of disconnects. Records shall be retained for a minimum of five years and made readily available during normal business hours and submitted upon request to the \(\mathrm{APCO}, \mathrm{CARB}\), or EPA. [District Rule 4624]
12. ATC shall be implenented concurrently with or subsequent to ATC C-2872-64-0. [District Rule 2201]

\section*{AUTHORITY TO CONSTRUCT}

PERMIT NO: C-2872-67-0
ISSUANCE DATE: 01/16/2014
LEGAL OWNER OR OPERATOR: CHEVRON USA, INC.
MAILING ADDRESS: POBOX 1392
BAKERSFIELD, CA 93302
LOCATION:
LIGHT OIL PRODUCTION FRESNO COUNTY, CA
SECTION: 7 TOWNSHIP: 19S RANGE: 15E
EQUIPMENT DESCRIPTION:
UP TO 1000 BBL FIXED ROOF CRUDE OIL WASH TANK (7FT3) CONNECTED TO TANK VAPOR CONTROL SYSTEM LISTED ON PERMIT C-2872-64

\section*{CONDITIONS}
1. No air contaminant shall be released into the atmosphere which causes a public nuisance. [District Rule 4102]
2. The unit shall always operate at least 805 ft away from the nearest receptor. [District Rule 4102]
3. Except as otherwise provided on this permit, this tank shall be maintained in a leak-free condition. [District Rule 4623, 5.1]
4. Except as otherwise provided in this permit, any tank gauging or sampling device on a tank vented to the vapor recovery system shall be equipped with a lesk-free cover which shall be closed at all times except during gauging or sampling. [District Rule 4623, 5.6]
5. Except as otherwise provided for on this permit, this tank shall only vent to the vapor control system. (District Rules 2201 and 4623, 5.1]
6. VOC fugitive emissions from the components in gas and liquid scrvicc on the tank shall not exceed \(7.3 \mathrm{lb} /\) day , [District Rule 2201]
7. Permittee shall maintain accurate component count for tank according to EPA's "Protocol for Equipment Leak Emission Estimate," Table 2-4 (EPA-453/R-95-017), Oil and Gas Production Operations Average Emission Factors. Permittee shall update such records when new components are approved and installed. [District Rule 2201]

\section*{CONDITIONS CONTINUE ON NEXT PAGE}

\begin{abstract}
YOU HUST NOTIFY THE DISTRICT COMPLIANEE DVISION AT (669) 2SO-5950 WHEN CONGTRUCTION IS COMPLETED AND PRIOR TD OPERATNG THE EOUIPMENT OR MODFICATIONS AUTHORIZED BY THIS AUTHORITY TO CONSTRUCT, THIS IS NOT \(\sigma\) PEFWIT TO OPERATE. Approvel or denlel of a FERMIT TO OPERATE will be made after Bn inspection to verfify thal the equlpment has been constructed in accotdence with fhe approwed plans, apecifcatlons ard condilons of this Authorliy to Consliuch, and lo determine if the equipmenl cen ba operaled In compliance wilh all Rules and Regulations of the San Joagulin Valley Unifled Alr Pollullan Conifol Disifict. Unlesg constructlon has comimenced pursuant to Rule 20 bo, this Authotty lo Construct ghall exple and applicalion shall be cancelled two years from the date of liguance. The applicant is reaponsible for comphing with all laws, ordinances and regulatlons of all ather governmental apencles which may portaln to the pbova equlpmant.
\end{abstract}

Seyed Sadredin, Executive Drector/ APCO

\footnotetext{
Arnaud Mariollet, Director of Permit Services

}
8. All piping, fittings, and valves on this tank shall be inspected annually by the facility operator in accordance with EPA Method 21, with the instrument calibrated with methane, to ensure compliance with the leaking provisions of this permit. [District Rules 2201 and 4623 , 5.1]
9. Any component found to be leaking by the operator on wo consecutive annual inspections is in violation of the District Rule 4623, even if it is under the voluntary inspection and maintenance program. [District Rules 2201 and 4623, Table 3]
10. Operator shall visually inspect tank shell, hatches, seals, seams, cable seals, valves, flanges, connectors, and any other piping components directly affixed to the tank and within five feet of the tank at least once per year for liquid leaks, and with a portable hydrocarbon detection instrument conducted in accordance with EPA Method 21 for gas leaks. Operator shall also visually or ultrasonically inspect as appropriate, the external shells and roofs of uninsulated tanks for structural integrity annually. [District Rule 2201 and 4623, Table 3]
11. Upon detection of a liquid leak, defined as a leak rale of greater than or equal to 30 drops per minute, operator shall repair the leak within 8 hours. For leaks with a liquid leak rate of between 3 and 30 drops per minute, the leaking component shall be repaired within 24 hours after detection. [District Rules 2201 and 4623, Table 3]
12. Upon detection of a gas leak, defined as a VOC concentration of greater than 10,000 ppmiv measured in accordance with EPA Method 21, operator shall take one of the following actions: 1) ellminate the leak within 8 hours after detection; or 2) if the leak cannot be eliminated, then mimimize the leak to the lowest possible level within 8 hours after detection by using best maintenance practices, and eliminate the leak within 48 hours after minimization. In no event shall the total time to minimize and eliminate a leak exceed 56 hours after detection. [District Rules 2201 and 4623 , Table 3]
13. Components found to be leaking either liquids or gases shall be immediately affixed with a tag showing the component to be leaking. Operator shall maintain records of the hiquid or gas leak detection readings, date/time the leak was discovered, and date/time the component was repaired to a leak-free condition. [District Rules 2201 and 4623, Table 3]
14. Leaking components that have been discovered by the operator that have been immediately tagged and repaired within the timeframes specified in District Rule 4623, Table 3 shall not constitute a violation of this rule. Leaking components as defined by District Rule 4623 discovered by District staff that were not previously identified and/or tagged by the operator, and/or any leaks that were not repaired within the time frames specified in District Rule 4623. Table 3 shall constitute a violation of this rule. [District Rules 2201 and 4623, Tabic 3]
15. If a component type for a given tank is found to leak during an annual inspection, operator shall conduct quarterly inspections of that component type on the tank or tank system for four consecutive quarters. If no components are found to leak after four consecutive quarters, the opergtor may revert to annua] inspections. [District Rules 2201 and 4623, Table 3]
16. The permittee shall keep accurate records of the dates of inspection and monitoring and the components inspected and monitored. [District Rule 2201 and 4623, 5.7 and 6.3]
17. Operator shall maintain an inspection log containing the following 1) Type of component leaking; 2) Date and time of leak detection, and method of detection; 3) Date and time of leak repair, and emission level of recheck after leak is repaired; 4) Method used to minimize the leak to lowest possible level within 8 hours after detection. [District Rules \(2080]\)
18. Permittee shall notify the APCO in writing at least three (3) days prior to performing tank degassing and interior tank cleaning activities. Written notification shail include the following: 1) the Permit to Operate number and physical location of the tank being degassed, 2) the date and time that tank cegassing and cleaning activities will begin, 3) the degassing method, as allowed in this permit, to be used, 4) the method to be used to clean the tank, including any solvents to be used, and 5) the method to be used to dispose of any removed sludge, including methods that will be used to control errissions from the receiving vessel and emissions during transpont. [District Rule 4623,5.7]
19. This tank shall be degassed before commencing interior cleaning by one of the following methods (1) exhausting VOCs contained in the tank vapor space to an APCO-approved vapor recovery system until the organic vapor concentration is 5,000 ppmy or less, or is 10 percent or less of the lower explosion limit (CEL), whichever is less; or (2) displacing VOCs contained in the tank vapor space to an APCO-approved vapor recovery system by filling the tank with a suitable liquid until 90 percent or more of the maximum operating level of the tank is filled. Suitable liquids are organic fiquids having a TVP of less than 0.5 psia, water, clean produced water, or produced water derived from crude oil having a TVP less than 0.5 psia; or (3) displacing VOCs contained in the tank vapor space to an APCO-approved vapor recovery system by filling the tank whlth a suitable gas. Degassing shall continue until the operator has achieved a vapor displacement equivalent to at least 2.3 times the tank capacity. Suitable gases are air, nitrogen, carbon dioxide, or natural gas containing less than 10 percent VOC by weight. [District Rule 4623, 5.7]
20. During tank degassing, the operator shall discharge or displace organic vapors contained in the tank vapor space to an APCO-approved vapor recovery system. [District Rule 4623, 5.7]
21. To facilitate connection to an external APCO-approved recovery system, a suitable tank fitting, such as a manway, may be temporarily removed for a period of time not to exceed 1 hour. [District Rule 4623, 5.7]
22. This tank shall be in compliance with the applicable requirements of District Rule 4623 at alf times during draining, degassing, and relilling the tank with an organic liquid. [District Rule 4623, 5.7]
23. After a tank has been degassed pursuant to the requirements of this permit, vapor control requirements are not applicable until an organic liquid is placed, held, or stored in this tank. [District Rule 4623, 5.7]
24. While performing tank cleaning activities, operators may only use the following cleaning agents; water, diesel, solvents with an initiat boiling point of greater than 302 degrees \(\vec{F}\), solvents with a vapor pressure of less than 0.5 psia, or solvents with 50 grams of VOC per liter or less. [District Rule 4623, 5.7]
25. Steam cleaning shall only be allowed at locations where wastewater treatment facilities are limited, or during the months of December through March. [District Rule 4623]
26. During sludge removal from a vessel containing an organic liquid with a TVP or 1.5 psia or greater, the operator shall control emissions from the sludge receiving vessel by operating an APCO-approved vapor control device that reduces emissions of organic vapors by at least \(95 \%\). [District Rule 4623, 5.7]
27. Permittee shall only transport removed sludge from a tank containing an organic liquid with a TVP of 1.5 psia or greater, In closed liquid leak-free containers. [District Rute 4623, 5.7]
28. Permittee shal store removed sludge, until final disposal, in vapor leak-free containers, or in tanks complying with the vapor control requirements of District Rule 4623. Sludge that is to be used to manufacture roadmix, as defined in District Rule 2020, is not required to be stored in this manner. Roadmix manufacturing operations exempt pursuant to District Rule 2020 shall maintain documentation of their compliance with Rule 2020, and shall readily make said documentation available for District inspection upon request. [District Rules 2020 and 4623, 5.7]
29. All records of required monitoring data and support information stall be maintained ander retained on-site for a period of at least 5 years and shall be made available for District inspection upon request. [Districe Rules 220 ] and 4623, 5.7 and 6.3]
30. ATC shall be implemented concurtently with or subsequent to ATC C-2872-64-0. [District Rule 2201]

\section*{AUTHORITY TO CONSTRUCT}

PERMIT NO: C-2872-66-0
ISSUANCE DATE: 01/16/2014
LEGAL OWNER OR OPERATOR: CHEVRON USA, INC. MAILING ADDRESS:

POBOX 1392
BAKERSFIELD, CA 93302
LOCATION:
LIGHT OIL PRODUCTION
FRESNO COUNTY, CA
SECTION: 7 TOWNSHIP: 195 RANGE: 15E
EQUIPMENT DESCRIPTION:
UP TO 300 BBL HORIZONTAL THREE PHASE SEPARATOR VESSEL (7FV1) CONNECTED TO TANK VAPOR CONTROL SYSTEM LISTED ON PERMIT C-2872-64

\section*{CONDITIONS}
1. No air contaminant shall be released into the atmosphere which causes a public nuisance. [District Rule 4102]
2. The unit shall always operate at least 805 ft away from the nearest receptor. [District Rule 4102]
3. Except as otherwise provided on this permit, this separator shall be maintained in a leak-free condition. [District Rule 4623, 5.1]
4. Except as otherwise provided in this permit, any separator gauging or sampling device on a separator vented to the vapor recovery system shall be equipped with a leak-free cover which shall be closed at all times except during gauging or sampling. [Distric1 Rule 4623, 5.6]
5. Except as otherwise provided for on this permit, this separator shall only vent to the vapor control system. [District Rules 2201 and 4623, 5.1]
6. VOC fugltive emissions from the components in gas and liquid service on the phase separator shall not exceed 12.0 \(\mathrm{lb} /\) day. [District Rule 2201]
7. Permittee shall maintain accurate component count for separator according to EPA's "Protocol for Equipment Leak Emission Estimate," Table 2-4 (EPA-453/R-95-017), Oil and Gas Production Operations Average Emission Factors. Permittee shall update such records when new components are approved and instalied. [District Rule 2201]

\section*{CONDITIONS CONTINUE ON NEXT PAGE}

YOU MUST NOTIFY THE OISTRUCT COMPLLANCE DWISION AT (559) 230-5950 WHEN CONSTRUCTION IS COWPLETED AND PRIOR TO OPERATING THE EQUIPMENT OR MODIFICATIONS AUTHORIZEO BY THIS AUTHORITY TO CONSTRUCT. ThI IS NOT Q PERMIT TO OPERATE. Approval or denial of a PERMIT TO OPERATE wilt bo made after an Inspection to verty that the equipment has been construcled in atcordance with the approved plans, specilications and conditions of this Authority lo Construct, and to determine if the equpment can be oparated in complance wilh alt Rutes and Regulations of the San Joaquin Valley Unifed Air Pollution Control Districi. Unless constuciton has commeniced pursuant to Rule \(20 \log\), thls Aulhortly to Construct shall explre and applicallon shall be cencelled wo years from the dale of issurance. Tha appllcant is responsible for complying with all laws, ordinances and regulalions of all other govarnmental agencias which may pertain to the above equipment.
Seyed Sadredin, Executive Director / APCO

Arnaud Warjallet, Dlrector of Permit Services
8. All piping, fittings, and valves on this separator shall be inspected annually by the facility operator in accordance with EPA Method 21, with the instrument calibrated with thethane, to ensure compliance with the leaking provisions of this permit. [District Rules 2201 and \(4623,5.1]\)
9. Any component found to be leaking by the operator on two consecutive annual inspections is in violation of the District Rule 4623, even if it is under the voluntary inspection and maintenance program. [District Rules 2201 and 4623, Table 3]
10. Operator sha!l visually inspect separator shell, hatches, seals, seams, cable seals, valves, flanges, connectors, and any other piping components directly affixed to the separator and within five feet of the separaior at least once per ycar for liquid leaks, and with a portable hydrocarbon detection instrument conducted in accordance with EPA Method 21 for gas leaks. Operator shall also visually or ultrasonically inspect as appropriate, the cxicmal shells and roofs of uninsulated separators for structural integrity annually. [District Rule 2201 and 4623, Table 3]
11. Upon detection of a liquid leak, defined as a leak rate of greater than or equal to 30 drops per minute, operator shall repair the leak within 8 hours. For leaks with a liquid leak rate of between 3 and 30 drops per minute, the leaking component shall be repaired within 24 hours atter detection. [District Rules 2201 and 4623, Table 3]
12. Upon detection of a gas leak, defined as a VOC concentration of greater then 10,000 ppmv measured in accordance with EPA Method 21, operator shall take one of the following actions: 1) eliminate the leak withit 8 hours after detection; or 2) if the leak cannot be climinated, then minimize the leak to the lowest possible level within 8 hours after detection by using best maintenance practices, and eliminate the lcak within 48 hours after minimization. In no event shall the total time to minimize and ellminate a leak exceed 56 hours after detection. [District Rules 220 ] and 4623, Table 3]
13. Components found to be leaking either liquids or gases shall be immediately affixed with a tag showing the component to be leaking. Operator shall maintain records of the liquid or gas leak detection readings, date/time the leak was discovered, and datettime the component was repaired to a leak-free condition. [District Rules 2201. and 4623, Table 3]
14. Leaking components that have been discovered by the operator that have been immediately tagged and repaired within the timeframes specified in District Rule 4623, Table 3 shall not consfitute a violation of this rule. Leaking components as defined by District Rule 4623 discovered by District staff that were not previously identified and/or tagged by the operator, and/or any leaks that were not repaired within the timeframes specified in District Rule 4623 , Table 3 shall constitute a violation of this rule. [District Rules 2201 and 4623, Table 3]
15. If a component type for a given separator is found to leak during an annual inspection, operator shall conduct quarterly inspections of that component type on the separator or separator system for four consecutive quarters. If no components are found to leak after four consecutive quarters, the operator may revert to anmual inspections. [District Rules 2201 and 4623, Table 3]
16. The permittee shall keep accurate records of the dates of inspection and monitoring and the components inspected and monitored. [District Rule 2201 and 4623, 5.7 and 6.3]
17. Operator shall mainain an inspection log containing the following 1) Type of component leaking; 2) Date and time of leak detection, and method of detection; 3) Date and time of leak repair, and emission level of recheck afler leak is repaired; 4) Method used to minimize the leak to lowest possible level within 8 hours after detection. [District Rules 2080]
18. Permittee shall notify the APCO in writing at least three (3) days prior to petforming separator degassing and interior separator cleaning activities. Written notification shall include the following: I) the Permit to Operate number and physical location of the separator being degassed, 2) the date and time that separator degassing and cleaning activities will begin, 3) the degassing method, as ullowed in this permit, to be used, 4) the method to be used to clean the separator, including any solvents to be used, and 5) the method to be used to dispose of any removed sludge, including methods that will be used to control emissions from the receiving vessel and emissions during transport. [District Rule 4623, 5.7]
19. This separator shall be degassed before commencing foterior cleaning by one of the following methods (1) exhausting VOCs contained in the separator vapor space to an APCO-approved vapor recovery system until the organic vapor concentration is 5,000 ppmv or less, or is 10 percent or less of the lower explosion limit (LEL), whichever is less; or (2) displacing VOCs contained in the separator vapor space to an APCO-approved vapor recovery system by filling the separator with a suitable liquid until 90 percent or more of the maximum operating level of the separator is filled. Suitable liquids are organic liquids having a TVP of less than 0.5 psia, water, clean produced water, or produced water derived from crude oil having a TVP less than 0.5 psia; or (3) displacing VOCs contained in the separator vapor space to an APCO-approved vapor recovery system by filling the separator with a suitable gas. Degassing shall continue until the operator has achieved a vapor displacement equivalent to at least 2.3 times the separator capacity. Suitable gases are air, nitrogen, carbon dioxide, or natural gas containing less than 10 percent VOC by weight. [District Rule 4623, 5.7]
20. During separator degassing, the operator shall discharge or displace organic vapors contained in the separator vapor space to ari APCO-approved vapor recovery system. [District Rule 4623, 5.7] '
21. To facilltate connection to an extemal APCO-approved recovery system, a suitable separator fitting, such as a manway, may be temporarily removed for a period of time not to exceed 1 hour. [District Rule 4623, 5.7]
22. This separator shall be in compliance with the applicable requirements of District Rule 4623 at all times during draining, degassing, and refilling the separator with an organic liquid. [District Rule 4623, 5.7]
23. After a separator has been degassed pursuant to the requirements of this permit, vapor control requirements are nol applicable until an organic liquid is placed, held, or stored in this separator. [District Rule 4623, 5.7]
24. While performing separator cleaning activities, operators may only use the following cleaning agents: water, diesel, solvents with an initial boiling point of greater than 302 degrees \(F\), solvents with a vapor pressure of less than 0.5 psia, or solvents with 50 grams of VOC per liter or less. [District Rule 4623, 5.7]
25. Steam cleaning shall only be allowed at locations where wasewater treatment facilities are limited, or during the months of December through March; [District Rule 4623, 5.7]
26. During sludge removal from a vessel containing an organic liquid with a TVP or 1.5 psia or greater, the operator shall control emissions from the sludge receiving vessel by operating an APCO-approved vapor control device that reduces emissions of organic vapors by at least \(95 \%\). [District Rule 4623, 5.7]
27. Permittee shall only transport removed sludge from a separator containing an organic liquid with a TVP of 1.5 psia or greater, in closed liquid leak-free containers. [District Rule 4623, 5.7]
28. Permittee shall store removed sludge, until final disposal, in vapor leak-free containers, or in separators complying with the vapor control requirements of District Rule 4623 . Sludge that is to be used to manufacture roadmix, as defined in District Rule 2020, is not required to be stored in this manner. Roadmix manufacturing operations exempt pursuant to District Rule 2020 shall maintain documentation of their compliance with Rule 2020, and shall readily make said documentation available for District inspection upon request. [District Rules 2020 and 4623, 5.7]
29. All records of required monitoring data and support information shall be maintained and retained on-site for a period of at least 5 years and shall be made available for District inspeetion upon request. [District Rules 2201 and 4623, 5.7 and 6.3]
30. ATC shall be implemented concurrently with or subsequent to ATC C-2872-64-0. [District Rule 2201]

\title{
AUTHORITY TO CONSTRUCT
}

\author{
PERMIT NO: C-2872-64-0 \\ ISSUANCE DATE: 01/18/2014 \\ LEGAL OWNER OR OPERATOR: CHEVRON USA, INC. MAILING ADDRESS: POBOX 1392 BAKERSFIELD, CA 93302 \\ LIGHT OIL PRODUCTION \\ FRESNO COUNTY, CA \\ \section*{SECTION: 7 TOWNSHIP: 195 RANGE: 15E} \\ \section*{EQUIPMENT DESCRIPTION:} \\ UP TO 1000 EBL FIXED ROOF CRUDE OIL STORAGE TANK (7FT1), INCLUDING LACT UNJT WITH LIQUID PUMPS DISCHARGING TO TRUCK LOADOUT LISTED ON PERMIT C-2872-68, AND VENTING TO TANK VAPOR CONTROL SYSTEM SHARED WITH TANKS C-2872-65, '-68, '-67, AND TRUCK LOADOUT C-2872-68, DISCHARGING COLLECTED VAPORS TO DOGGR-APPROVED DISPOSAL WELLS
}

\section*{CONDITIONS}
1. No air contaminant shall be released into the atmosphere which causes a public nuisance. [District Rule 4102]
2. The unit shall always operate at least 805 ft away from the nearest receptor. [District Rule 4102]
3. The vapor control system shall be capable of reducing VOC emissions by at least \(95 \%\) by weight. [District Rule 4623, 5.7]
4. Collected tank vapors shall be reinjected into DOGGR-approved disposal well. [Disurict Rule 2201]
5. Except as otherwise provided on this permit, this tank shall be maintained in a leak-free condition. [District Rule 4623, 5.1]
6. Except as otherwise provided in this permit, any tank gauging or sampling device on a tank vented to the vapor recovery system shall be equipped with a leak-free cover which shall be closed at all times except during gauging or sampling. [District Rule 4623,5.6]
7. Except as otherwise provided for on this permif, this tank shall only vent to the vapor control system. [District Rules 2201 and \(4623,5.1\) ]

\section*{CONDITIONS CONTINUE ON NEXT PAGE}

YOU MUST NOTIFY THE DISTRICT COMPLIANCE DIVISION AT (569) \(230-5950\) WHEN CONSTRUCTION IS COMPLETED AND PRIOR TO OPERATING THE EQUIPMENT OR MODIFICATIONS AUTHORIZED BY THIS AUTHORITY TO CONSTRUCT. THIS IS NOT B PERMT TO OPERATE. Approval or dental of a PERMT 70 OPERATE will be made afler on inspectlon to verify that the equipmenl has been constructed in accordance with the approved plans, speclications and conditions of this Aulhority to Construct, and to determine it the equipment can be operated in complance with all Rutes and Regulations of the San Joaquin Valley Unilied Air Pollulion Conirol Olstict. Uniesa consiruction has commented pursuant to Rule 2050, inls Aulhorly to Construci shall exple and application shall be cancelled two years from Ihe dala of issuance. The appilcant is responsible for complying with all laws, ordinances and regulalions of all other govemmental agencles which may pertain to ite above equipment.
Seyed Sadredin, Executlve Director / APCO

\footnotetext{
Armaud Marjoliet, Director of Permat Services

}
8. Except as otherwise provided in this permit, the vapor control system shall be maintained in a leak-free condition. [District Rule 4623, 5.1]
9. VOC fugitive emissions from the components in gas and kiquid service on the tank and LACT shall not exceed 7.6 lb/day, [District Rule 2201]
10. VOC fugtive emissions from the components in gas and liquid service part of the vapor control systen shall not exceed 23.2 [b/day. [District Rule 2201]
11. Permittee shall maintain accurate component count for tank and TVR system according to EPA's "Protocol for Equipment Leak Emission Estimate," Table 2-4 (EPA-453/R-95-017), Oi] and Gas Production Operations Average Emission Factors. Permittee shall update such records when new components are approved and installed. [District Rule 2201]
12. Alt piping, fittings, and valves on this tank shal be inspected annually by the facility operator in accordance with EPA Method 21, with the instrument calibrated with methane, to ensure compliance with the leaking provisions of this perrit. [District Rules 2201 and 4623, 5.1]
13. Any component found to be leaking by the operator on two consecutive anmual Inspections is in violation of the Distriet Rule 4623, even if it is under the voluntary inspection and maintenance program. [Districu Rules 2201 and 4623, Table 3]
14. Operator shall visually inspect tank shell, hatches, seals, seams, cable seals, valves, flanges, connectors, and any other piping components directly affixed to the tank and within five feet of the tank al least once per year for liguid leaks, and with a portable hydrocarbon detection instrument conducted in accordance with EPA Method 21 for gas leaks. Operator shall also visually or ultrasonically inspect as appropriate, the external shells and roofs of uninsulated tanks for structural integrity annually. [District Rule 2201 and 4623, Table 3]
15. Upon detection of a liquid leak, defined as a leak rate of greater than or equal to 30 drops per minute, operator shall repair the leak within 8 hours. For leaks with a liquid leak rate of between 3 and 30 drops per minute, the leaking component shall be repaired within 24 hours after detection. [District Rules 2201 and 4623 , Table 3]
16. Upon detection of a gas leak, defined as a VOC concentration of greater than 10,000 ppmv measured in accordance with EPA Method 21, operator shall take one of the following actions: 1) eliminate the leak within 8 hours after detection; or 2) if the leak cannot be climinated, then minimize the leak to the lowest possible level within 8 hours after detection by using best maintenance practices, and eliminate the leak within 48 hours after minimization. in no event shall the total time to minimize and eliminate a leak exceed 56 hours after detection. [District Rules 220] and 4623, Table 3]
17. Components found to be leaking either liquids or gases shall be immediatcly affixed with a tag showing the component to be leaking. Operator shall maintain records of the liquid or gas leak detection readings, date/time the leak was discovered, and date/time the component was repaired to a leak-ftee condition. [District Rules 2201 and 4623, Table 3]
18. Leaking components that have been discovered by the operator that have been immediately taged and repaired within the tifneframes specifled in District Ruie 4623, Table 3 shall not constitute a violation of this rule. Leaking components as defined by District Rule 4623 discovered by Dlstrict staff that were not previously identified and/or tagged by the operator, and/or any leaks that were not repaired within the timeftames specified in District Rule 4623, Table 3 shall constitute a violation of this rule. [District Rules 2201 and 4623, Table 3]
19. If a component type for a given tank is found to leak during an annual inspection, operator shail conduct çuarterly inspections of that component type on the tank or tank system for four consecutive quarters. If no components are found to leak after four consecutive quarters, the operator may revert to annual inspections. [District Rules 2201 and 4623, Table 3]
20. The permittee shall keep accurate records of the dates of inspection and montoring and the components inspected and monitored. [District Rule 2201 and \(4623,5.7\) and 6.3]
21. Operator shall maintain an inspection log containing the following 1) Type of component leaking; 2) Date and time of leak detection, and method of detection; 3) Date and time of leak repair, and emission level of recheck after leak is repaired; 4) Method used to minimize the leak to lowest possible level within 8 hours after detection. [District Rules 2080]
22. Permittee shall notify the APCO in writing at least three (3) days prior to performing tank degassing and interior tank cleaning activitics. Written notification shall include the following: 1) the Permit to Operate number and physical location of the tank being degassed, 2) the date and time that tank degassing and cleaning activities will begin, 3) the degassing method, as allowed in this permit, to be used, 4) the method to be used to clean the tank, including any solvents to be used, and 5) the method to be used to dispose of any removed sludge, including methods that will be used to control emissions from the receiving vessel and emissions during transport. [District Rule 4623, 5.7]
23. This tank shall be degassed before commencing interior cleaning by one of the following methods (1) exhausiing VOCs contained in the tank vapor space to an APCO-approved vapor recovery system until the organic vapor concentration is \(5,000 \mathrm{ppmv}\) or less, or is 10 percent or less of the lower explosion limit (LEL), whichever is less; or (2) displacing VOCs contained in the tank vapor space to an APCO-approved vapor recovery system by filling the tank with a suitabje liquid until 90 percent or more of the maximum operating level of the tank is filled. Suitable liquids are organic liquids having a TVP of less than 0.5 psia, water, clean produced water, or produced water derived from crude oil having a TVP less than 0.5 psia; or (3) displacing VOCs contained in the tank vapor space to an APCO-approved vapor recovery system by filling the tank with a suitable gas. Degassing shall continue until the operator bas achleved a vapor displacement equivalent to at least 2.3 times the tank capacity. Suitable gases are air, nitrogen, carbon dioxide, or natural gas containing less than 10 percent VOC by weight. [District Rule 4623, 5.7]
24. During tank degassing, the operator shall discharge or displace organic vapors contained in the tank vapor space to an APCO-approved vapor recovery system. [District Rule 4623, 5.7]
25. To facilitate connection to an extemal APCO-approved recovery system, a suitable tank fitting, such as a manway, may be temporarily removed tor a period of time not to exceed l hour. [District Rule 4623, 5.7]
26. This tank shall be in compliance with the applicable requirements of District Rute 4623 at all times during draining, degassing, and refilling the tank with an organic liquid. [District Rule 4623, 5.7)
27. After a tank has been degassed pursuant to the requirements of this permit, vapor control requirements are not appicable until an organic liquid is placed, held, or stored in this tank. [District Rule 4623, 5.7]
28. While performing tank cleaning activities, operators may only use the following cleaning agents: water, diesel, solvents with an initial boiling point of greater than 302 degrees \(F\), solvents with a vapor pressure of less than 0.5 psia, or solvents with 50 grams of VOC per liter or less. [District Rule 4623, 5.7]
29. Steam cleaning shall only be allowed at locations where wastewater treatment facilities are limited, or during the months of December through March. [District Rule 4623, 5.7]
30. During sludge removal from a vessel containing an organic liquid with a TVP or 1.5 psia or greater, the operator shad control emissions from the sludge receiving vessel by operating an A.PCO-approved vapor control device that reduces ernissions of organic vapors by at least 95\%. [District Rule 4623, 5.7]
31. Permittee shall only transport removed sludge from a tank containing an organic liquid with a TVP of 1.5 psia or greater, in closed liquid leak-free containers. [District Rule 4623, 5.7]
32. Permittee shall store removed sludge, until final disposal, in vapor fcak-frce containers, or in tanks complying with the vapor control requirements of District Rule 4623. Sludge that is to be used to manufacture roadmix, as defined in District Rule 2020, is nol required to be stored in this manner. Roadmix marufacturing operations exempt pursuant to District Rule 2020 shall maintain doeumentation of their compliance with Rule 2020 , and shall readily make said documentation available for District inspection upon request. [District Rules 2020 and 4623, 5.7]
33. All records of required monitoring dara and support information shall be maintained and retained on-site for a period of at least 5 years and shall be made available for District inspection upon request. [District Rules 2201 and \(4623,5.7\) and 6.3]
34. PTOs C-2872-1~1 through '-4-1, and '-7-1 shall be cancelled upon implementation of ATC. [District Rule 2201]

\section*{AUTHORITY TO CONSTRUCT}

PERMIT NO: C-2872-65-0
ISSUANCE DATE: 01/16/2014

\section*{LEGAL OWNER OR OPERATOR: MAILING ADDRESS:}

LOCATION:

CHEVRON USA, INC.
POBOX 1392
BAKERSFIELD, CA 93302
LIGHT OIL PRODUCTION
FRESNO COUNTY, CA

SECTION: 7 TOWNSHIP: \(18 S\) RANGE: 15E
EQUIPMENT DESCRIPTION:
UP TO 1000 BBE FIXED ROOF CRUDE OLL DRAN TANK (7FT2) CONNECTED TO TANK VAPOR CONTROL SYSTEM LISTED ON FERMIT C-2872-64

\section*{CONDITIONS}
1. No air contaminant shall be released into the almosphere which causes a public nuisance. [District Rule 4102]
2. The unit shall always operate at least 805 ft away from the dearest receptor. [District Rule 4102]
3. Except as otherwise provided on this permit, this tank shall be maintained in a leak-free condition. [District Rule 4623, 5.1]
4. Except as otherwise provided in this permit, any tank gauging or sampling device on a tank vented to the vapor recovery system shall be equipped with a leak-free cover which shall be closed at all times except during gauging or sampling. [District Rule 4623, 5.6]
5. Except as otherwise provided for on this permit, this tank shall only vent to the vapor control system. [District Rules 2201 and \(4623,5.1]\)
6. Except as otherwise provided in this permit, the vapor control system shall be maintained in a leak-free condition. [District Rule 4623, S.l]
7. VOC fugitive emissions from the components in gas and liquid service on the tank shall not exceed \(4.9 \mathrm{lb} /\) day. [District Rule 2201]

\section*{CONDITIONS CONTINUE ON NEXT PAGE}

\begin{abstract}
YOU MUST NOTFY THE DISTRICT COMPLIANGE DVISION AT (659) 230-5960 WHEN CONSTRUCTION IS COMFLETED AND PRIOR TO OPERATING THE EQUIPMENT OR MODFICATIONS AUTHORIZED BY THIS ANTHORJTY TO CONSTRUGT, ThIs IS NOT a PERMIT TO OPERATE. Approvai dr denial of a PERMIT TO OPERATE will be made alter an inspecilon to verlfy that the equipmeni has been construcled in accordance wilh the approved plans, speclications and condilions of tils Authority to Construch, and to determine ti the equipment can be operaled in compllance wilh all Rules and Reguladons of the San Joaquin Valley Unifled Air Potlution Conirol Disirci. Unless construction has commenced pursuant lo Rule 2050, this Authority to Construct ahall exples and application shall be cancelled two yoars from the date of issuanca. The applcant is responstble for complying with all laws, ordinences and regulatons of all other govermmentai agencies which may pertain to the above equipment.
\end{abstract}

Seyed Sadredin. Executlve Director / APCO

\footnotetext{
Amaud Marollet, Director of Permit Seryices

}
8. Permittee shall maintain accurate component count for tank according to EPA's "Protocol for Equipment Leak Emission Estimate," Table 2-4 (EPA-453/R-95-017), Oil and Gas Production Operations Average Emission Factors. Permittee shall update such records when new components are approved and installed. [District Rule 220]]
9. All piping, fittings, and valves on this tank shall be inspected annually by the facility operator in accordance with EPA Method 21 , with the instrument calibrated with methane, to ensure compliance with the leaking provisions of this permit. [District Rules 2201 and \(4623,5.1\) ]
10. Any component found to be leaking by the operator on two consecutive annual inspections is in violation of the District Rule 4623, even if it is under the voluntary inspection and maintenance program. [District Rules 220] and 4623, Table 3]
11. Operator shall visually inspect tank shell, hatches, seals, seams, cable seals, valves, flanges, connectors, and any other piping components directiy affixed to the tank and within five feet of the tank at least once per year for liquid leaks, and with a portable hydrocarbon detection instrument conducted in accordance with EPA Method 21 for gas leaks. Operator shall also visually or ultrasonically inspect as appropriate, the external shells and roofs of uninsulated tanks for structural integrity annually. [District Rule 2201 and 4623, Table 3]
12. Upon detection of a liquid leak, defined as a leak rate of greater than or equal to 30 drops per minute, operator shal! repair the leak within 8 hours. For leaks with a liquid leak rate of between 3 and 30 drops per minute, the leaking component shall be repaired within 24 hours after detection. [District Rules 2201 and 4623, Table 3]
13. Upon detection of agas leak, defined as a VOC concentration of greater than 10,000 ppmv measured in accordance with EPA Method 21, operator shall take one of the following actions: 1) eliminate the leak within 8 hours after detection; or 2 ) if the leak cannot be eliminated, then minimize the leak to the lowest possible level within 8 hours after detection by using best maintenance practices, and eliminate the leak within 48 hours after minimization. in no event shall the total time to minimize and eliminate a leak exceed 56 hours after detection. [Distict Rutes 220] and 4623, Table 3]
14. Components found to be leaking either liquids or gases shail be immediately affixed with a tag showing the component to be leaking. Operator shall maintain records of the liquid or gas leak detection readings, date/time the leak was discovered, and date/time the component was repaired to a leak-free condition. [District Rules 2201 and 4623, Table 3]
15. Leaking components that have been discovered by the operator that have been immediately tagged and repaired within the timeframes specified in District Rule 4623, Table 3 shall not constitute a violation of this rule. Leaking components as defined by District Rule 4623 discovered by District staff that were not previously identified and/or tagged by the operator, and/or any leaks that were not repaited within the time frames specified in District Rule 4623, Table 3 shal] constitute a violation of this rule. [District Rules 2201 and 4623, Table 3]
16. If a component fype for a given tank is found to leak during an annual inspection, operator shall conduct quarterly inspections of that component type on the tank or tank system for four consecutive quarters. If no components are found to leak after four consecutive quarters, the operator may revert to annual inspections. [District Rules 2201 and 4623, Table 3]
17. The permittee shall keep accurate records of the dates of inspection and monitoring and the components inspected and monitored. [District Rule 2201 and 4623, 5.7 and 6.3]
18. Operator shall maintain an inspection log containing the following 1) Type of component leaking; 2) Date and time of leak detection, and method of detection; 3) Date and time of leak repair, and emission level of recheck after leak is repaired; 4) Method used to minimize the leak to lowest possible level within 8 hours after detection. [District Rules 2080]
19. Permittee shall notify the APCO in writing at least three (3) days prior to performing tank degassing and interior tank cleaning activities. Written notification shall include the following: 1) the Permit to Operate number and physical location of the tank being degassed, 2) the date and time that tank degassing and cleaning activities will begin, 3) the degassing method, as allowed in the permit, to be used, 4) the method to be used to clean the tank, including any solvents to be used, and 5 ) the method to be used to dispose of any removed sludge, including methods that will be used to control emissions from the receiving vessel and emissions during transport. [District Rule 4623,5.7]
20. This tank shall be degassed before commencing interior cleaning by one of the following methods (1) exhausting VOCs contained in the tank vapor space to an APCO-approved vapor recovery system until the organic vapor concentration is \(5,000 \mathrm{ppmv}\) or less, or is 10 percent or less of the lower explosion limit (LEL), whichever is less; or (2) displacing VOCs contained in the tank vapor space to an APCO-approved vapor recovery system by filling the tank with a suitable liquid until 90 percent or more of the maximum operating level of the tank is filled. Suitable liguids are organic liquids having a TVP of less than 0.5 psia, water, clean produced water, or produced water derived from crude oil having a TVP less than 0.5 psia; or (3) displacing VOCs contained in the tank vapor space to an APCO-approved vapor recovery system by filling the tank with a suitable gas. Degassing shall continue until the operator has achieved a vapor displacement equivalent to at least 2.3 times the tank capacify. Suitable gases are air, nitrogen, carbon dioxide, or natural gas containing less than 10 percent VOC by weight. [District Rule 4623, 5.7]
21. During tank degassing, the operator shall discharge or displace organic vapors contained in the tank vapor space to an APCO-approved vapor recovery system. [District Rule 4623, 5.7]
22. To facilitate connection to an external APCO-approved recovery system, a suitable tank fitting, such as a manway, may be temporarily removed for a period of time not to exceed ] hour. [District Rule 4623, 5.7]
23. This tank shall be in compliance with the applicable requirements of District Rule 4623 at all times during draining, degassing, and refilling the tank with an organic liquid. [District Rule 4623, 5.7]
24. After a tank has been degassed pursuant to the requirements of this permit, vapor control requirements are not applicable until an organic liquid is placed, held, or stored in this tank [District Rule 4623, 5.7]
25. While performing tank cleaning activities, operators may only use the following cleaning agents; water, diesel, solvents with an initial boiling point of greater than 302 degrees \(F\), solvents with a vapor pressure of less than 0.5 psia, or solvents with 50 grams of VOC per liter or less. [District Rule 4623, 5.7]
26. Steam cleaning shall only be allowed at locations where wastewater treatment facilities are limited, or during the months of December through March, [District Rule 4623, 5.7]
27. During sludge removal from a vessel containing an organic liquid with a TVP or 1.5 psia or greater, the operator shal! control emissions from the sludge receiving vessel by operating an APCO-approved vapor control device that reduces emissions of organtic vapors by at least 95\%. [District Rule 4623, 5.7]
28. Permittee shall only iransport removed sludge from a tank containing an organic liquid with a TVP of 1.5 psia or greater, in closed liquid leak-free containers. [District Rule 4623, 5.7]
29. Permittee shall store removed sludge, until final disposal, in vapor leak-free containers, or in tanks complying with the vapor control reguirements of District Rule 4623. Sludge that is to be used to manufacture roadmix, as defined in District Rule 2020, is not required to be stored in this manner. Roadmix manufacuring operations exempt pursuant to District Rule 2020 shall maintain documentation of their compliance with Rule 2020, and shall readily make said documentation availabie for District inspection upon request. [District Rules 2020 and 4623, 5.7]
30. All records of required monitoring data and support infortation shall be maintained and retained on-site for a period of at least 5 years and shall be made available for District inspection upon request. [District Rules 2201 and 4623, 5.7 and 6.3]
31. ATC shall be implemented concurrently with or subsequent to ATC C-2872-64-0. [District Rule 2201]

San Joaquin Valley
Air Pollution Control District

PERMIT UNIT: C-2872-7-1
EXPIRATION DATE: \(10 / 31 / 2017\)
SECTION: 7 TOWNSHIP: 195 RANGE; 15E
EQUIPMENT DESCRIPTION:
3,000 BBL WASH TANK \#T-200

\section*{PERMIT UNIT REQUIREMENTS}
1. No air contaminant shall be released into the atmosphere which causes a public nuisance. [District Rule 4102]
2. The tank shall be equipped with a vapor recovery system consisting of a closed vent system that collects all voCs from the storage tank, and a VOC control device. The vapor recovery system shall be APCO-approved and maintained in leak free condition. The VOC control device shall be either of the following: a vapor teurn or condensation system that connects to a gas pipeline distribution system, or an approved VOC destruction device that reduces the indet VOC emissions by at least \(95 \%\) by weight as determined by the test method specified in Section 6.4.7. [District Rule 4623]
3. Except as otherwise provided in this permit all piping, valves, and fittings shall be constructed and maintained in a leak free condition. [District Rule 4623]
4. Any tank gauging or sampling device on a tank vented to the vapor recovery system shall be equipped with a gas-tight cover which shall be closed at all times except during gauging or sampling. [District Rule 4623]
5. Fugitive VOC emission rate, calculated using the Oil and Gas Production Operations Average Emission Factors, U.S. EPA Protocol for Equipment Leak Emission Estimates, Table 2-4 (EPA-453/R-95-017) from the total number of vapor components associated with this permit unit shail not exceed 7.3 lb/day. [District Rule 2201]
6. Permittee shall maintain accurate component count for this permit unit according to EPA's "Protocol for Equipment Leak Emission Estimate," Table 2-4, Oil and Gas Production Operations Average Emissions Factors. Permittee shall update such records when new components are approved and installed. [District Rule 2201]
7. Permittee shall notify the \(\triangle\) PCO in writing at least three (3) days prior to performing tank degassing and interior tank cloaning activities. Written notification shall include the following: 1) the Permit to Operate number and physical location of the tank being degassed, 2) the date and time that tank degassing and cleaning activities will begin, 3) the degassing method, as allowed in this permit, to be used, 4) the method to be used to clean the tank, including any solvents to be used, and 5) the method to be used to dispose of ony removed sludge, including methods that will be used to control emissions from the receiving vessel and emissions during transport. [District Rule 4623]
8. This tank shall be degassed before commencing interior cleaning by following one of the following options: 1) exhausting VOCs contained in the tank vapor space to an APCO-approved vapor recovery system until the organic vapor concentration is \(5,000 \mathrm{ppm}\) or less, or is 10 percent or less of the lower explosion limit (LEL), whichever is less, or 2) by displacing VOCs contained in the tank vapor space to an APCO-approved vapor recovery system by filling the tank with a suitable liquid until 90 percent or more of the maximum operating level of the tank is filled. Suítable liquids are organic liquids having a TVP of less than 0.5 psia, water, clean produced water, or produced water derived from crude oil having a TVP less than 0.5 psia, or 3 ) by displacing VOCs contained in the tark vapor space to an APCO-approved vapor recovery system by filling the tank with a suitable gas. Degassing shalf continue until the operator has achieved a vapor displacement equivalent to at least 2.3 times the tank capacity. Suitable gases are air, nitrogen, carbon dioxide, or natural gas containing less than 10 percent VOC by weight. [District Rule 4623]
9. During tank degassing, the operator shall discharge or displace organic vapors contained in the tank vapor space to an APCO-approved vapor recovery system. [Distriet Rule 4623]
10. To facilitate connection to an extemal APCO-approved recovery system, a suitable tank fiting, such as a manway, may be temporarily removed for a period of time not to exceed [ hour. [District Rule 4623]
11. This tank shall be in compliance with the applicable requirements of District Rule 4623 at all times during draining, degassing, and refilling the tank with an organic liquid having a TVP of 0.5 psia or greater. [District Rule 4623]
12. After a tank has been degassed pursuant to the requirements of this permit, vapor control requirements are not applicable until an organic liquid having a TVP or 0.5 psia or greater is placed, held, or stored in this tank. [District Rule 4623]
13. While performing tank cleaning activities, operators may only use the following cleaning agents: diesel, solvents with an initial boiling point of greater than 302 degrees \(F\), solvents with a vapor pressure of less than 0.5 psia, or solvents with 50 grams of VOC per liter or less. [District Rule 4623]
14. Steam cleaning shall only be allowed at locations where wastewater treatment facilities are limited, or during the months of December through March. [District Rule 4623]
15. During sludge removal from a tank containing an organic liquid with a tvp of \(£ 5\) psia or greater, the operator shall control emissions from the sludge receiving vessel by operating an APCO-approved vapor control device that reduces emissions of organic vapors by at least \(95 \%\). [District Rute 4623]
16. Permittee shall only transport removed siudge from a tank containing an organic liquid with a TVP of 1.5 psia or greater in closed, hquid leak-free containers. [District Rule 4623]
17. Permittec shall store removed sludge from a tank containing an organic liquid with a TVP of 1.5 psia or greater, until final disposal, in vapor leak-free containers, or in tanks complying with the vapor control requirements of District Rule 4623. Sludge that is to be used to manufacture roadnix, as defined in District Rule 2020, is not required to be stored in this manner. Intermediate storage of sludge from a tank containing an organic liquid with a TVP of 1.5 psia or greater while determining suitability for use as roadmix must be in vapor leak free containers or in tanks complying with the vapor control requirements of Rule 4623. Roadmix manufacturing operations exempt pursuant to District Rule 2020 shall maintain documentation of their compliance with Rule 2020, and shall readily make said documentation available for District inspection upon request. [Districl Rules 2020 and 4623]
18. Operator shall maintain an inspection log containing the following 1) Type of component leaking; 2) Date and time of leak detection and method of detection; 3) Date and time of leak repair and emission level of recheck after leak is repaired; 4) Method used to minimize the leak to lowest possible level within 8 hours after detection. [District Rule 2080]
19. This permit authorizes tank cleaning that is not the result of breakdowns or poor maintenance as a routine maintenance activity. [District Rule 2080]
20. Operator shall visually inspect tank sheh, hatches, seals, seams, cable seals, valves, flanges, connectors, and any other piping components directly affixed to the tank and widhin five feet of the tank at least once per year for liquid leaks, and with a portable hydrocarbon detection instrument conducted in accordance with EPA Method 21 for gas leaks. Operator shall also visually or ultrasonically inspect as appropriate, the external shells and roofs of uninsulated tanks for structural integrity annually, [District Rule 4623]
21. Upon detection of a liquid leak, defined as a leak rate of greater than or equal to 30 drops per minute, operator shall repair the leak withln 8 hours. For leaks with a liquid leak rate of between 3 and 30 drops per minute, the leaking component shall be repaired within 24 hours after detection. [District Rule 4623]
22. Upon detection of a gas leak, defined as a VOC concentration of greater than \(10,000 \mathrm{ppmv}\) measured in accordance with EPA Method 21, operator shall take one of the following actions: 1) eliminate the leak within 8 hours after detection; or 2) if the leak cannot be eliminated, then minimize the leak to the lowest possibie level within 8 hours after detection by using best maintenance practices, and eliminate the leak within 48 hours after minimization. In no event shall the total time to minimize and eliminate a leak exceed 56 hours after detection. [District Rule 4623]
23. Components found to be leaking either liquids or gases shall be immediately affixed with a tag showing the component to be leaking. Operator shall maintain records of the liquid or gas leak detection readings, date/lime the leak was discovered, and date/lme the component was repaired to a leak-free condition. [District Rule 4623]
24. Leaking components that have been discovered by the operator that have been immediately tagged and repaired within the timeframes specified in District Rule 4623 , Table 3 shall not constitute a violation of this rule. Leaking components as defined by Disrict Rule 4623 discovered by District staff that were not previously identifed and/or tagged by the operator, and/or any leaks that were not repaired within the timeframes specified in District Rule 4623, Table 3 shall constitute a violation of this rule. [District Rule 4623]
25. If a component lype for a given tank is found to leak during an annual inspection, operator skall conduct quarterly inspections of that component type on the tank or tank system for four consecutive quaters. If no components are found to leak after four consecutive quarters, the operator may revert to annual inspections. [District Rule 4623]
26. Any component found to be leaking on two consecutlve annual inspections is in violation of this rule, even if covered under the voluntary inspectlon and maintenance program. [District Rule 4623]
27. All records shall be maintained and retained on-site for a period of at least 5 years and shall be made available for District inspection upon request. [District Rule 1070]

\title{
San Joaquin Valley \\ Air Pollution Control District
}

PERMIT UNIT: C-2672-4-1
EXPIRATION DATE: 10/31/2017
SECTION: 7F TOWNSHIP: 19S RANGE: 15E
EQUIPMENT DESCRIPTION:
5,000 EBL FIXED-ROOF, 3 RNNG WELDED PRODUCTION TANK \#T-600
PERMIT UNIT REQUIREMENTS
1. No air contaminant shall be released into the atmosphere which causes a public nuisance. [District Rule 4102]
2. The tank shall be equipped with a vapor recovery system consisting of a closed vent system that collects all VOCs from the storage tank, and a VOC control device. The vapor recovery system shall be APCO-approved and mainlained in leak free condition. The VOC control device shall be either of the following: a vapor retum or condensation systern that connects to a gas pipeline distribution system, or an approved VOC destruction device that reduces the inlet VOC. emissions by at least \(95 \%\) by weight as determined by the test method specified in Section 6.4.7. [District Rule 4623]
3. Except as otherwise provided in this permit all piping, valves, and fittings shall be constructed and maintained in a leak free condition. [District Rule 4623]
4. Any tank gauging or sampling device on a tank vented to the vapor recovery system shall be equipped with a gas-tight cover which shall be closed at all times except during gauging or sampling. [District Rule 4623]
5. Fugitive VOC emission rate, calculated using the Oil and Gas Production Operations Average Emission Factors, U.S. EPA Protocol for Equipment Leak Emission Esimates, Table 2-4 (EPA-453/R-95-017) from the total number of vapor components associated with this permit unit shall not exceed \(4.9 \mathrm{l} / \mathrm{d}\) day. [District Rule 2201]
6. Permittee shah maintain accurate component count for this permit unit according to EPA's "Protocol for Equipment Leak Emission Estimate," Table 2-4, Oil and Gas Production Operations Average Emissions Factors. Permittee shall update such records when new components are approved and installed. [District Rule 2201]
7. Permittee shall notify the APCO in writing at least three (3) days prior to performing tank degassing and interior tank cleaning activities. Written notification shall include the following: I) the Permit to Dperate number and physical location of the tank being degassed, 2) the date and time that tank degassing and clcaning activities will begin, 3) the degassing method, as allowed in this permit, to be used, 4) the method to be used to clean the tank, including any solvents to be used, and 5 ) the method to be used to dispose of any removed sludge, including methods that will be used to control emissions from the receiving vessel and emissions during transport. [District Rule 4623]
8. This tank shall be degassed before commencing interior cleaning by following one of the following options: 1) exhausting VOCs contained in the tank vapor space to an APCO-approved vapor recovery system until the organic vapor concentration is 5,000 ppmv or less, or is 10 percent or less of the lower explosion limit (LEL), whichever is less, or 2) by displacing VOCs contained in the tank vapor space to an APCO-approved vapor recovery system by filling the tark with a suitable liquid until 90 percent or more of the maximum operaling level of the tank is filled. Suitable liquids are organic liquids having a TVP of less than 0.5 psia , water, clean produced water, or produced water derived from crude oil having a TVP less than 0.5 psia, or 3) by displacing VOCs contained in the tank vapor space to an APCO-approved vapor recovery system by filling the tank with a suitable gas. Degassing shall continue until the operator has achieved a vapor displacement equivalent to at least 2.3 times the tank capacity. Suitable gases are air, nitrogen, carbon dioxide, or natural gas containitg less than 10 percent VOC by weight. [District Rule 4623]
9. During tank degassing, the operator shall discharge or displace organic vapors contained in the tank vapor space to an APCO-approved vapor recovery system. [District Rule 4623]
10. To facilitate connection to an external APCO-approved recovery system, a suitable tank fitting, such as a manway, may be temporarily removed for a period of time not to exceed I hour. [District Rule 4623]
11. This tank shall be in compliance with the applicable requirements of District Rule 4623 at all times during draining, degassing, and refilling the tank with an organic liquid having a TVP of 0.5 psia or greater. [District Rule 4623]
12. After a tank has been degassed pursuant to the requirements of this permit, vapor control requirements are not applicable until an organic liquid having a TVP of 0.5 psia or greater is placed, held, or stored in this tank. [District Rule 4623]
13. While performing tank cleaning activities, operators may only use the following cleaning agents: diesel, solvents with an initial boiling point of greater than 302 degrecs \(F\), solvents with a vapor pressure of less than 0.5 psia, or solvents with 50 grams of VOC per liter or less. [District Rule 4623]
14. Steam cleaning shall only be allowed at locations where wastewater treatment facilities are limited, or during the months of December through March. [District Rule 4623]
15. During sludge removal from a tank containing an organic liquid with a typ of 1.5 psia or grealer, the operator shall control emissions from the sludge receiving vessel by operating an APCO-approved vapor control device that reduces emissions of organic vapors by at least 95\%. [District Rule 4623]
16. Permittee shall only transport removed sludge from a tank containing an organic liquid with a TVP of 1.5 psia or greater in closed, hiquid leak free containers. [District Rule 4623]
17. Permittee shall store removed shudge from a tank containing an organic liquid with a TVP of 1.5 psia or greater, until final disposal, in vapor leak-free containers, or in tanks complying with the vapor control requirements of District Rule 4623. Sludge that is to be used to manufacture roadmix, as defined in District Rule 2020, is not required to be stored in this manner. Intennediate storage of sludge from a tank containing an organic liquid with a TVP of 1.5 psia or greater while determining suitability for use as roadmix must be in vapor leak free containers or in tanks complying with the vapor control requirements of Rule 4623. Roadmix manufacturing operations exempt pursuant to District Rule 2020 shall maintain documentation of their compliance with Rule 2020, and shall readily make said documentation available for District inspection upon request. [District Rules 2020 and 4623]
18. Operator shall maintain an inspection log containing the following 1) Type of component leaking; 2) Date and time of leak detection and method of detection; 3) Date and time of leak repair and emission level of recheck after leak is repaired; 4) Method used to minimize the leak to lowest possible level within 8 hours after detection. [Distrlct Rule 20801
19. Tbis permit authorizes tank cleaning that is not the result of breakdowns or poor maintenance as a routine maintenance activity. [District Rule 2080]
20. Operator shall visually inspect tark shell, hatches, seals, seams, cable seals, valves, flanges, connectors, and any other piping components directly affixed to the tank and within five feet of the tank at least once per year for liquid leaks, and with a portable hydrocarbon detection instrument conducted in accordance with EPA Method 21 for gas leaks. Operator shall also visually or ultrasonically inspect as appropriate, the external shells and roofs of uninsulated tanks for stuctural integrity annualy. [District Rule 4623]
21. Upon detection of a liquid leak, defined as a leak rate of greater than or equal to 30 drops per minute, operator shall repair the leak within 8 hours. For leaks with a liquid leak rate of between 3 and 30 drops per minute, the leaking component shall be repaired within 24 hours after detection. [District Rule 4623]
22. Upon detection of a gas leak, defined as a VOC concentration of greater than 10,000 ppmv measured in accordance with EPA Method 21, operator sha! take one of the following actions: 1) eliminate the leak within 8 hours after detection; or 2) if the leak cannot be eliminated, then minimize the leak to the lowest possible level within 8 hours after detection by using best maintenance practices, and eliminate the leak within 48 hours after minimization. In no event shall the total time to minimize and eliminate a leak cxceed 56 hours after detection. [District Rule 4623]
23. Components found to be leaking either liquids or gases shall be immediately affixed with a tag showing the component to be leaking. Operator shal! maintain records of the liquid or gas leak detection readings, date/time the leak was discovered, and date/time the component was repaired to a leak-free condition. (District Rule 4623]
24. Leaking components that have been discovered by the operator that have been immediately tagged and repaired within the timeframes specified in District Rule 4623, Table 3 shall not constitute a violation of this rule. Leaking components as defined by District Rule 4623 discovered by District staff that were not previously identified and/or tagged by the operator, and/or any leaks that were not repaired within the timeframes specified in District Rule 4623 , Table 3 shall constitute a violation of this rule. [District Rule 4623]
25. If a component type for a given tank is found to leak during an annual inspection, operator shall conduct quarterly inspections of that component type on the tank or tank system for four consecutive quarters. If no components are found to leak after four consecutive quarters, the operator may revert to annual inspections. [District Rule 4623]
26. Any component found to be leaking on two consecutive annual inspections is in volation of this rule, even if covered under the voluntary inspection and maintenance program. [District Rule 4623]
27. All records shall be maintained and retained on-site for a period of at least 5 years and shall be made available for District inspection upon request. 〔District Rule 1070]

\section*{ATTACHMENT II \\ Location Map}






\section*{ATTACHMENT III \\ Manufacturer's Specifications on Flare}

\title{
BUDGET PROPOSAL \\ JOHN ZINK \({ }^{\circledR}\) Open Flame Vapor \\ Truck and Tank Combustion Unit
}


Prepared for:

Tara Brennan

\section*{Of}

Fluor Corporation
for
Chevron
Coalinga, CA
\begin{tabular}{rl} 
PREPARED BY & EILL MATTHES \\
DATE & \(M A Y 14,2014\)
\end{tabular}

REVISION O
J2FLLENUMBER VC-201405-44729.A

Table of Contents
I. Introduction ..... 3
II. Design Basis ..... 5
III. Process Description ..... 6
IV. Performance ..... 7
V. Equipment Specifications ..... 10
VI. Commercial ..... 16
VII. Owner Requirements ..... 18
VIll. Scope of Supply Summary ..... 19
IX. Attachments ..... 21
A. General Terms and Conditions of SaleB. Technical Assistance AgreementC. Open Flame Preliminary Layout \& P\&IDs
D. Brochures

\section*{I. Introduction}

John Zink Company is pleased to provide this proposal for a vapor flaring system to be located at the Chevron, Coalinga, CA Facility. The system includes an open flame, air assisted smokeless flare with an automatic pilot and a knockout vessel to collect condensed hydrocarbon prior to entering the fiare. Also included with this system is a PLC based Integrated Control System and an equipment skid containing vapor valves, assist gas piping, and pilot piping. This proposal is based on a John Zink Company Standard, we do not have Chevron Specifications. Any specifications applied, may cause the price to increase.

The system is designed to handse vapors dlsplaced from either truck loading or tank filling and breathing.

The air assisted open flame flare will be designed to meet the criteria established for air assisted flares in 40 CFR 60.18. As such the reduction in VOCs can be claimed to be at least \(98 \%\). As such the reduction in VOCs can be claimed to be at least \(98 \%\). The key elements of meeting 40 CFR 60.18 are that the net heating value of the waste being flared is always at least \(300 \mathrm{Btu} / \mathrm{scf}\) and that the exit velocity leaving the flare tip is no greater than \(54 \mathrm{ft} / \mathrm{sec}\).

The burners are a special design that are recognized as anti-flashback to protect the upstream equipment from a flashback. This is an especially important feature for thls application since the vapors may be in the explosive range during loading.

The system will be factory assembled and is given a factory functional test and shlpped ready for customer installation. All necessary drawings and detailed instructions for proper installation, start-up, and operation will be provided.

John Zink's combustlon capabilities are second to none, and we have literaliy hundreds of combustion devices in vapor control service worldwide.

Through the execution of hundreds of vapor control projects, John Zink has developed a thoroagh understanding that our customers value safety, efficiency, and ease of installation, operation and maintenance in their equipment. The design of the proposed VCU incorporates several features which enhance safety, performance and reliabllity. John Zink also understands that, in addition to high-quality equipment, our customer's value excellence in project execution and service. Purchasing a system from John Zink provides many advantages not limited to the following:
- Experienced design and project management staff dedicated to providing excellent customer service during the execution and installation phases of a project.
- In-house fabrcation ability. Because John Zink owns its own 250,000 square foot manufacturing facility, we are able to assemble most systems in our own shop which allows us to better control quality and schedule. We also assemble our control

panels in-house and perform a functional test of the control panel and VCU skids prior to shipment.
- Large service organization. Our factory trained technicians provide both preventative maintenance and emergency call-out assistance \(24 / 7\).
- Spare parts inventory for quick turn arounds.
- Portable Emission Control Systems (PECS*) for temporary compllance needs.
- Installation assistance.
- John Zink proprietary anti-flashback burners. John Zink is the only VCU supplier to design and manufacture our own anti-flashback burners.

\section*{II. Design Basis}

The John Zlnk \({ }^{\Phi}\) Vapor Combustion System is based on proprietary technology and sound engineering. Terminal loading characteristics and other design data as furnished by the customer are summarized below:

> Products Handled Condensate
1. With vapors above \(300 \mathrm{btu} / \mathrm{scf}\), no assist gas is required.

\section*{Hll. Process Description}

The system normally consists of an elevated flare stack, special anti-flashback burner, automatic ignition pilot with continuous monitor, motor operated vapor block valve, detonation arrestor, air-assist blower, piping, instrumentation and master control panel packaged as an assembled unit ready for convenient fleld instaliation.

The start-up sequence consists of a short air purge using the air-assist blower to purge the stack of any combustibles prlor to pilot ignition. Thls brlef air purge is followed by automatic electronic ignition of the pilot. After pilot ignition, a signal is sent to the loading area that it is safe to start loading. This signal is normally connected to the loading pumps, so that loading shuts off during any fault shutdown.

Product loading of the trucks can begins and a vapor mixture begins to flow from the trucks being loaded to the vapor combustion system. As soon as sufficient flow is avallable at the combustion system, it will be detected by the pressure monitoring controls which will automatically open the burner safety control valve allowing the air vapor mlxture to flow through the detonation arrestor to the burner, where the combustible vapors are ignited by the pilot and burned. The air-assist blower provides partial combustion air and mixing energy to the burner tips to assure smokeless combustion.

The tank venting will occur as described above. The vent line from the truck rack and the tank will be combined into one inlet to the combustor.

The flare stack burner exit is 25 feet above grade which will limit the radiant heat at ground level when flaring the hydrocarbons, however it is recommended that the flare be located on a site that has non-flammable material in the immediate area.

The safety design considerations for a vapor combustion unit used in terminal applications is very important in that the vapors to be burned may contain sufficient alr concentration to present flashback potential. The John Zink vapor combustion system provides three (3) levels of flashback protection and prevention. These include:
1. Proprietary antl-flashback burners.
2. Burner safety shutoff motor operated valve,
3. Detonation arrestor with high temperature shutdown switch, which serves as a final backup flashback protection device to minimize the risk for any flashback to reach the loading area.

\section*{IV. Performance}

The John Zink \({ }^{\infty}\) Open Flame Vapor Combustion Unit is designed to combust the hydrocarbon vapors from the incoming air/hydrocarbon vapor mixture in order to comply with guaranteed emlssion limits as stated below.

\section*{Guaranteed Hydrocarbon EmIsslons Level}

John Zink Company guarantees the proposed system to achieve the following performance: \(98 \%\) destruction efficiency and to meet all applicable requirements of Title 40 Code of Federal Regulations Part 60 Section 18 (40 CFR 60.18).

\section*{Estimated System Pressure Drop}

40 estimated at maximum inlet flow conditions. (See Section II, Design Basis)

\section*{Utility Requirements}
\begin{tabular}{ll} 
Pilot Gas & \begin{tabular}{l}
21 SCFH Propane @ 4 PSIG or 54 SCFH of Natural Gas @ 7 PSIG \\
per pilot
\end{tabular} \\
Assist Gas & \begin{tabular}{l} 
Assist gas may be required to assure combustion. Assist gas could \\
be as high as 12 scfm of either natural gas or propane.
\end{tabular} \\
Instrument Air & None \\
Power & \(120 \mathrm{~V} / 1 \mathrm{PH} / 60 \mathrm{HZ}\) and \(480 \mathrm{~V} / 3 \mathrm{PH} / 60 \mathrm{HZ}\)
\end{tabular}

\section*{Performance Guarantee}

John Zink Company offers the following performance guarantees for the proposed Vapor Combustion Unit quoted:
\(98 \%\) destruction of all hydrocarbons that enter the stack and all applicable requirements of Title 40 Code of Federal Regulations Part 60 Section 18 ( 40 CFR 60.18).

The above stated performance guarantee is contingent upon the following conditions or clarifications:
1. The equipment is transported, stored, installed, operated, and maintained in compliance with manufactures' operating and maintenance guidelines (including operation records), accepted good industry practices, and within conditions as defined in "Design Basis" of this proposal.
2. Volatile organic compounds are considered to be those hydrocarbons normally found in natural gasoline vapors displaced when transports are loaded.
3. Determination of hydrocarbon emissions shall be measured according to the EPA Reference Methods \(2 \mathrm{~A}, 2 \mathrm{~B}, 25 \mathrm{~A} \& 25 \mathrm{~B}\) or any other equivalent test method acceptable by John Zink. Emissions are to be averaged over a 6 hour test period.
4. This VCU is designed to control only hydrocarbon emissions that pass through the vapor control system.
5. Assist gas may be required to meet performance guarantee. John Zink reserves the right to increase the stack temperature limits using assist gas.
6. The process guarantees apply only to the time period when loading is occurring. System purge, stack heat up, etc. are not included as part of the process performance test.
7. The performance guarantee as stated above is the only performance guarantee offered. Values stated for other parameters are good faith estimates and not to be construed as performance guarantees.
8. Any defects are reported immediately to John Zink.
9. Performance testing shall be conducted by customer within sixty ( 60 ) days after the equipment has been placed in operation. John Zink Company shall be notified in writing prior to the test so that their representative may be present. It shall be the customer's responsibility to maintain equipment in good working order prior to and during the testing. Performance testing is the Customer's
responsibility. However, if due to no fault of John Zink Company the equipment cannot be put into operation or for other reasons not tested within 12 months atter equipped is ready to ship, then the Performance Guarantee shall be deemed to have been met for any and all purposes.
10. Should the equipment not meet the Performance Guarantee, John Zink and the Customer shall jointly determine, in accordance with recognized engineering procedures and practices, whether the fallure is a result of a design deficlency. If it is established that the equipment failed to meet the Performance Guarantee and such failure is due to design deficlency, John Zink will take such action as it may determine necessary to correct the equipment to meet such guarantees, Customer agrees to give John Zink free and necessary access to the equipment when requested for the purpose of making correction.
11. The Performance Guarantees shall terminate 18 months after the date that the equipment is available for shipment or one year after start-up, whichever occurs first (the "Guarantee Period").

\section*{V. Equipment Specification}

The proposed vapor combustion system is provided in modular packages to allow for convenient field installation and to provide adequate equipment spacing for ease of operation and maintenance.

The flare vapor piping and assist gas injection skid will be furnished complete with a knockout tank, the vapor isolation valve, the pilot and assist gas piping, and a local panel rack for the control panel and assist air motor starter. (Refer to the attached P\&ID for details). A shop functional test of the packaged assembly is included.

The air assisted flare is shop assembled with the riser pipes, burners, pilots, air plenums, and legs installed.

The equipment is described in detail below. All sizes, dimensions and specifications are preliminary and may be changed in final engineering.

\section*{Flare Equipment Skid Assembly}

The flare support skid assembly contains the main components as described below Installed, pre-wired with a shop functional test prior to shipment.

\section*{Vapor Plping System}

The interconnecting piping from the truck rack (furnished by others) will flange up the John Zink skid with a \(4^{\prime \prime} 150\) flange at skid edge. Vapor piping will have a commercial blast surface preparation (SSPC-SP-6) and a zinc rich primer (one coat, 2.0-4.0 mils DFT).

Components with a manufacturer's finish coat will not be painted. Components that could be damaged by blasting such as valves will be hand-tool cleaned (SSPC-SP-2) instead of blasted. Sherwin-Williams products are used.

\section*{Vapor Isolation}

A \(4^{\prime \prime} 150\) \# wafer style high performance butterfly valve with a motor operator is located at the inlet to the flare. The valve is allowed to open only when the flare is operable and pilot is proven. The valve closes during any safety fault.

\section*{Detonation Arrester}

For flashback protection a 4 " detonation arrester suitable for Group " 0 " vapors will be used. John Zink will furnish a high temperature switch that will be installed on burner side face of detonation arrester element to automatically shutdown the vapor flow from the rack should high temperature be sensed. A pressure gauge is installed on each side of the detonation arrester to check for plugage.

\section*{Assist Gas System Plping}

A \(3 / 4^{\prime \prime}\) carbon steel pilot gas system will be provided to control the assist gas flow including a strainer, regulator, pressure gauge, shutdown valve, and manual flow control valve. Piping will have NPT connections with appropriately positioned unions to facilitate maintenance. The pilot gas system will have a commercial blast surface preparation (SSPC-\(\mathrm{SP}-6\) ) and zinc rich primer (one coat, \(2.0-4.0 \mathrm{mlls} \mathrm{DFT}\) ).

Components with a manufacturer's finish coat will not be painted. Components that could be damaged by blasting such as valves will be hand-tool cleaned (SSPC-SP-2) instead of blasted. Sherwin-Williams products are used.

\section*{Pilot Gas System Piping}

A \(3 / 4^{4}\) carbon steel pilot gas system will be provided to control the pilot gas flow including a strainer, regulator, pressure gauge, shutdown valve, and manual valves. Piping will have NPT connections with appropriately positioned unions to facilitate maintenance. The pilot gas system will have a commercial blast surface preparation (SSPC-SP-6) and zinc rich primer (one coat, 2,0-4,0 mils DFT).

Components with a manufacturer's finsh coat will not be painted. Components that could be damaged by blasting such as valves will be hand-tool cleaned (SSPC-SP-2) instead of blasted. Sherwin-Willams products are used.

\section*{Control Panel}

The John Zink control panel will consist of a NEMA 4 enclosures mounted on panel rack that is attached to the flare equipment skid. The panel is suitable for unclassified areas and contalns:

First out annunciator with the following indications:
- System power on
- Pilot flame proved
- Pilot flame failure
- Remote emergency shutdown
- High temperature detonation arrester shutdown
- High knockout vessel level alarm \& shutdown
- Remote Emergency Shutdown (Signal by others

GE 9030 solid state programmable controller.
Adjustable space heater in master panel enclosure.
Terminal connections in master control panel for customer connections:
- Remote system start
- Permissive to blowdown
- Remote emergency shutdown
- Remote alarm

\section*{Assist Air Blower Motor Starter}

A 3 HP, 460 Volts 3 Phase NEMA 3R motor starter for the assist air blower will be located in a NEMA \(3 R\) enclosure mounted on panel rack that is attached to the flare equipment skid. The motor starter is suitable for unclassified non-hazardous areas.

\section*{Flare Equipment Skid}

The structural steel skid will be fabricated in accordance with AWS 01.1 and will be constructed of A36 carbon steel. The skid is approximately \(2^{\prime} 2^{\prime \prime}\) wide \(\times 7\) feet long.

The electrical design and construction is in accordance with NFPA-70 of the NEC, except for Article 515, Table 515-2.

All electrical devlces on the skid as shown on attached P\&ID are suitable for an unclassified area code and will be shop wired using galvanized conduit.

\section*{Miscellaneous Flare Equipment Skid Devices}

The system includes additional devices items as follows:
1. Pilot gas pressure regulator and automatic block valve.
2. Assist gas pressure regulator and automatic block valve
3. Assist gas restriction orifice
4. Pilot monitoring thermocouple and low temperature switch.
5. Detonation arrester high temperature switch.
6. Pilot ignition transformer.
7. Various hand valves, pressure gauges, strainers, etc as shown on attached P\&ID.

\section*{Elevated Vapor Flare}

\section*{Process design}

The flare is designed to handle the vapor from both truck and tank venting up to \(627 \mathrm{lb} / \mathrm{hr}\) or a maximum heat release of \(13.05 \mathrm{MMBtu} / \mathrm{hr}\).

\section*{Mechanical Design}

The self-supported flare has an overall height of 25 feet. Lifting lugs are provided to simplify the erection.

Material of construction is A-36 carbon steel except for the upper \(12^{\prime \prime}\) of the riser stack which constructed from Type 304 stainless steel.

Welding per AWS-D1.1. No testing or \(x\)-say is included

\footnotetext{
PROPRIETARY DOCUMENT COpyrIghted 2014 by IOHN ZINK COMPANY, LLC.
}

The structural design is as follows
Earthquake UBC 2000 Zone 0
Wind Velocity ASCE 7-05 100 mph

The carbon steel portion of the flare has a commercial-blast surface preparation (SSPC-SP6) and zinc-fich primer (one coat, 2.0-4.0 mils DFT).

\section*{Antl-flashback Vapor Burner}

The flare will use one \(8^{\prime \prime}\) stalnless steel anti-flashback burner. This proprietary burner design helps prevent flashbacks into the vapor plping by using technology similar to that used in flame and detonation arrestors.

\section*{Energy Efficlent Pilot}

One (1) self-inspiration energy efficient Zeus pilot complete with automatic electronic ignition. The pilot is designed to utilize propane or natural gas for fuel. The pilot inspirates amblent air and mixes it with fuel gas to provide a pre-mixed stream to the tips. Fuel gas use is approximately 54 scfh due to the high efficiency design. An automatic electronic ignition assembly is provided

\section*{Assist Air Blower}

One (1) tube-axial air blower complete with \(3 \mathrm{HP}, 480\) volt/3 \(\mathrm{PH} / 60\) cycle TEFC motor and manual damper. The air assist blower provides partial combustion air and sufficient mixing energy to assure smokeless combustion. The forced air also reduces thermal radiation, shortens flame length and, by shaping the flame, extends burner life.

\section*{Flare instrumentation (nonhazardous classification)}

A thermocouple monitors the pilot to ensure that it remains lit.

\section*{Flare System Control Operation}

\section*{Purge, Pilot Ignition and Standby:}

When the PLC receives a Start signal, the assist air blower starts. After the purge is complete, the blower stops, the pilot gas shutdown valve opens and the Ignition transformers initiate spark at the pilot tips to ignite the plot gas. If the pilor flame is confirmed by the thermocouple monitoring the pilot, the PLC sends a flare standby signal to the customer. In the Standby mode the flare is neariy ready to recelve vapors but will use very little fuel gas. If the pilot flame is not confirmed by the thermocouple, the system pauses and then retries. If the pilot flames are not confirmed within the determined number of tries, the system will shut down on Pllot Failure.

\section*{Normal Operation:}

With unlt in the standby mode, the automatic vapor block valve is allowed to open. The pressure monitoring system opens and closes the valve. Normally the valve will open once the pressure in the waste gas line reaches \(4^{\prime \prime}\) W.C. and closes if the pressure falls to \(0.5^{\prime \prime}\) W.C.

\section*{Normal Shutdown:}

When the Start signal is removed, the assist air blower stops, the pilot gas shutdown valve closes, and the PLC removes the Standby signal and closes the automatic vapor and assist gas valves.

\section*{Weight (Estimated)}
Total System Weight (operational)............................................................... 3,500 pounds

Stack (operatlonal)....................................................................................... 2,200 pounds
Skid (operational) 1,300 pounds

\section*{Options}

In the discussion that follows some optional features are offered. Each of the optional features offered are identified by number and the pricing of each option is included in the Commercial Section of this proposal.

\section*{1. Alarm Horn}

One (1) alarm horn to sound upon shutdown of the vapor combustion system. The horn is conveniently mounted on the control panel and is loud enough to alert terminal personnel of a safety shutdown. This horn Is suitable for a non-hazardous area.

\section*{2. Flame Shroud}

One (1) \(5^{\prime}\) O.D. X \(5^{\prime}\) O.A.H. carbon stee burner shroud to partially shield flame. Shroud will be lined with 1 " thick ceramic refractory. It is estimated that the shroud will conceal \(90 \%\) of the visible flames. Picture of stack with shroud shown on page 3 of this proposal.

\section*{3. Auxillary Outlet}

One (1) 110 volt auxiliary outlet receptacle.

\section*{4. Temperature Recorder}

One (1) digital chart recorder to record stack pilot temperature, pilot "on" and waster gas valve open/closed.

\section*{5. Pllot Gas Low Pressure Shutdown}

One (1) pilot gas low-pressure switch to shutdown the unlt in case of low pllot gas pressure.
6. Pilot Gas High Pressure Shutdown

One (1) pilot gas high-pressure switch to shutdown the unit in case of high pilot gas pressure.

\section*{7. Underwriters Laboratories Classification}

John ZInk Company is dedicated to ensuring the highest level of quality and safety standards in its products. This performance level is reflected in all products and provides the opportunity to apply the UL 位ting symbol for Industrial Control Panels on motor starters and a UL classlfication symbol of the control panels.

\section*{VI. Commercial}

\author{
Pricing, Delivery, Terms
}

\section*{Budget Price}

The Budget Price (all prices are in US Dollars) for the John Zink Vapor Combustion System proposed herein includes design and fabrication. The sales price excludes frelght and handling to job site, field installation, commissioning (start-up) services, appticable taxes, fees, permits, or any other charges.

Price for VCU with all standard features, \(\$ 121,573\)

\section*{Price Adder}

Option Number \& Description
1. Alarm Horm \$773
2. Flame Shroud \(\$ 8,500\)
3. Auxiliary Outlet \$325
4. Temperature Recorder \(\quad \$ 6,700\)
5. Pilot Gas Low Pressure Switch \(\quad \$ 1,260\)
6. Pllot Gas High Pressure Switch \$1,260
7. Underwriters Laboratorles Classification \(\$ 2,150\)

One (1) hard copy and three (3) CD electronic copies of Installation/Operation/Maintenance Manuats are included. Extra copies ordered after the original manuals are printed will be supplied at \(\$ 1,000.00\) per copy. One (1) electronic set of customer drawings will be furnished in AutoCAD DWF format or PDF file format. Hard coples will be furnished on request.

Price is based on Buyer's acceptance of attached John Zink Company Standard Terms of Sale.
Except as otherwise noted in this proposal, the prices quoted are valid for thirty \(\{30\}\) days from the date of the proposal. Should delivery be delayed past the quoted delivery by acts of Buyer or its agent, the quoted price will be subject to escalation.

Based on approval of credit, invoices will be submitted for payment as follows:
- \(10 \%\) of net price on receipt of purchase order
- \(60 \%\) of net price six (6) weeks after recelpt of arder
- \(30 \%\) of net price when notified that the unit is ready for shipment.

Payments for invoices are due net 30 from the date of invoice.
A guaranteed form of payment such as a letter of credit may be required.

Trade Terms are FCA Point of Manufacture. John Zink will make shipping arrangements and prepay freight on behalf of customer. Freight and handling costs will be added to customer invoices. Risk of loss during shipment rests with customer.

\section*{SCHEDULE}

The estimated readiness to ship is approximately 16 weeks after receipt of mutually agreed upon order. If drawing review and approval by customer is required this will extend the dellvery. A detailed schedule will be provided after recelpt of such order.

\section*{COMMISSIQNING/START-UP}

Commissioning (start-up) service rates are per the attached Standard Technical Assistance Agreement. Start-up services by a John Zink representative are required to retain the limited warranty. Start-up performed by others voids both the limited warranty and the performance guarantee.

\section*{VII. Owner Requirements}

The owner is required to install the Vapor Combustion unit in a NON-HAZARDOUS LOCATION.
1. Provide suitable skid and stack foundation, which will completely support the structural members.
2. Unload and set vapor combustor skid and stack on foundation.
3. Install items removed for shipping.
4. Furnish and connect vapor tine from loadimg facilities.
5. The owner is responsible for the following field wiring and conduit from the control panel to:
- Electrical items on the combustion stack.
; The loading facilities.
6. Corrections of minor misfits by moderate amount of reaming, cutting, bending, welding, etc. are a part of fitup and installation. It is the intent of John Zink Company to minimize errors leading to misfits. If there are changes requiring more than moderate corrections, contact John Zink Company for instructions.
7. Provide natural gas or propane to VCU for pilot gas and assist gas at specified flow rates and pressure of 25 psig.
9. Assure no low spot traps in vapor piping that would trap liquid.
10. Provide grounding for unit.

\section*{VIII, Scope of Supply Summary}

The following Scope of Supply is to confirm ltems provided by John Zink in our proposal. The attached Scope of Supply is provided to help the customer compare proposals and should include the minimum safety features included in any design.
\begin{tabular}{|c|c|}
\hline Stack & \\
\hline Stack Size: & \(12^{\prime \prime} \mathrm{OD} \times 25^{\prime} \mathrm{OAH}\) \\
\hline No. of Burners & One (1) \(8^{\prime \prime} 00 \times 6^{\prime \prime}\) thick element \\
\hline Anti-flashback Burner: & Yes \\
\hline Burner Manufacture: & John Zink \\
\hline Sandblasted: & Yes \\
\hline Coated: & Zinc Primer \\
\hline Pllot & \\
\hline No, of Pilot(s): & One \\
\hline Pilot Manufacture: & John Zink \\
\hline Adjustable Pilot: & Yes \\
\hline Plot Monitor: & Thermocouple \\
\hline Asslst Air/Purge Blower & \\
\hline Assist Air/Purge 8lower Provided: & Yes \\
\hline Blower Horsepower: & 3 HP \\
\hline Safety Valve & \\
\hline Safety valve provided: & Yes \\
\hline Valve size: & 4 " \\
\hline Actuator: & Electric \\
\hline Quantity: & 1 \\
\hline Detonation Arrestor & \\
\hline High Temperature Shutdown: & Yes \\
\hline Size: & \(4^{\prime \prime}\) \\
\hline Quantity: & One \\
\hline Plping & \\
\hline Waste Gas Piping Size: & 4" \\
\hline and stack: & Yes \\
\hline Control Panel & \\
\hline Panel Rack Provided: & Yes \\
\hline PLC Control: & Yes \\
\hline Automatic Start Feature: & Yes \\
\hline
\end{tabular}
\begin{tabular}{ll} 
Panel Heater: & Yes \\
Combination Motor Starter: & Yes \\
Panef Enclosure Rating: & NEMA 4 \\
Horn: & Optional
\end{tabular}

\section*{Experience}

Number of unlts sold Over 1,200

\section*{IX. Attachments}

The following attachments are contained in this section:
A. Generat Terms and Conditlons of Sale
B. Technicai Assistance Agreement
C. Open Flame Preliminary Layout \& P\&IDs
D. Brochures

\section*{ATTACHMENT A}

GENERAL TERMS AND CONDITIONS OF SALE

This proposal is subject in all regards to the General Terms and Conditions of Sale attached hereto, which are hereby incorporated herein.

\section*{ATTACHMENT C}

OPEN FLAME PRELIMINARY LAYOUT \& P \& ID

PROPRIETARY DOCUMENT COpyrighted 2014 by JOHN ZINK COMPANY, LLC.
This document is proprletary. It is to be malntalned in confidence. Use of, or copying in whole or part is prohlbited and shall only be granted by written permisslon of John Zink Company.


25



\section*{ATTACHMENTD}

BROCHURES

PROPREETARY DOCUMENT COpyrighted 2014 by JOHN ZINK COMPANY, LLC.

\title{
© Jonn zink HAMWORTHY COMBUSTION
}

Vapor Combustion Systems


lfacturing, service and support, and more. As a thy Combustion VCUs to deliver where it counts:

1e flame while combusting hydrocarbon vapors in
mption and achieves higher destruction efficiencies. ilternative when a visible flame and its resultant jen-flame combuștors are copable of destruction

3shback protection. In marine loading applications.三 a fiquid seal exemption based on our proprietary
astion of explosive mixtures that are unsuitable for lactured at the John Zink Hamworthy Combustion wide stable comberstion over a wide range of flows
nufactured at John Zink Hamworthy Combustion. rice for the vapors.
ustion.
stitlate vapors can reduce or eliminate auxiliary fuel oh rich, enriching vapors when lean, and averaging
el use for inert vapors, especially when vapors

きan vapors can reduce fuel gas usege. ur blowers reduce the amount of fuel gas required equirements to be met at lower operating \(n\).


Bundie a PECS reatsl with other fohen zirk seruices zuch as tustailatian, start-up. orsite operator assistance and training or dismonting to ssive both time and moner


\section*{- JOHN ZINK \\ HAMWORTHY}

COMBUSTION


\section*{ATTACHMENT IV \\ Fugitive Emissions Calculations}

\section*{Chevron USA C-2872}

\section*{Permit Unit \# C-2872-64-1 Oil Storage Tank T-110 and LACT}

EPA Protocol for Equbment Leak Emission Estimate
Table 2-4. Oil and Gas Production Operations
Average Emission Factors
\(\begin{array}{ll}\text { Weight percentage of VOC in the lotal organic compounds in gas (neglect non-organics)? } & 100 \% \\ \text { Weight percentage of VOC in the total organic compounds in oil (neglect non-organics)? } & 100 \%\end{array}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Equipment Type & Service & Screening Valu ( \(\mathrm{kg} / \mathrm{h} / \mathrm{source}\) ) & OC (lb/dsy/source) & Component Count & VOC emissions (Ib/day) \\
\hline \multirow[t]{4}{*}{Valves} & Gas & \(4.5 \mathrm{E}-0.3\) & \(2.381 \mathrm{E}-01\) & 15 & 3.57 \\
\hline & Heavy Oil & 8.4E-06 & 4.445E-04 & 0 & 0.00 \\
\hline & Light Oil & \(2.5 \mathrm{E}-03\) & \(1.323 \mathrm{E}-01\) & 0 & 0.00 \\
\hline & Water/Oil & 9.8E-0.5 & \(5.185 \mathrm{E}-03\) & 0 & 0.00 \\
\hline \multirow[t]{4}{*}{Pump Seais} & Gas & \(2.4 \mathrm{E}-03\) & 1.270E-01 & 0 & 0.00 \\
\hline & Heavy Oil & N/A & N/A & 0 & N/A \\
\hline & Light Oil & 1.3E-02 & 6.878E-01 & 2 & 1.38 \\
\hline & Water/Oil & 2.4E-05 & (270E-03 & 0 & 0.00 \\
\hline \multirow[t]{4}{*}{Others} & Gas & \(8.8 \mathrm{E}-03\) & 4.656E-01 & 3 & 1.40 \\
\hline & Heavy Oil & 3.2E-05 & \%.693E-03 & 0 & 0.00 \\
\hline & Light Oil & 7.5E-03 & 3.968E-01 & 0 & 0.00 \\
\hline & Water/Oil & 1.4E-02 & 7.408E-01 & 0 & 0.00 \\
\hline \multirow[t]{4}{*}{Connectors} & Gas & \(2.0 \mathrm{E}-04\) & 1.058E-02 & 0 & 0.00 \\
\hline & Heavy Oil & 7.5E-06 & \(3.968 \mathrm{E}-04\) & 0 & 0.00 \\
\hline & Light Oil & 2.1E-04 & \(1.111 \mathrm{E}-02\) & 84 & 0.93 \\
\hline & Water/Oil & 1.1E-0.4 & \(5.820 \mathrm{E}-03\) & 0 & 0.00 \\
\hline \multirow[t]{4}{*}{Flanges} & Gas & 3.9E-04 & 2.064E-02 & 18 & 0.37 \\
\hline & Heavy Oil & 3.9E-07 & \(2.064 \mathrm{E}-05\) & 0 & 0.00 \\
\hline & Light Oil & 1.1E-04 & \(5.820 \mathrm{E}-03\) & 0 & 0.00 \\
\hline & WaterMic & \(2.9 \mathrm{E}-06\) & 1.534E-04 & 0 & 0.00 \\
\hline \multirow[t]{4}{*}{Open-nded Lines} & Gas & \(2.0 \mathrm{E}-03\) & \(1.058 \mathrm{E}-01\) & 0 & 0.00 \\
\hline & Heavy Oil & \(1.4 \mathrm{E}-04\) & \(7.408 \mathrm{E}-03\) & 0 & 0.00 \\
\hline & Light Oil & \(1.4 \mathrm{E}-03\) & \(7.408 \mathrm{E}-02\) & 0 & 0.00 \\
\hline & Watar/Oil & 2.5E-04 & \(1.323 \mathrm{E}-02\) & 0 & 0.00 \\
\hline
\end{tabular}

Total VOC Emissions =
\(7.6 \mathrm{lb} / \mathrm{day}\)

\section*{Chevron USA C-2872}

\section*{Permit Unit \# C-2872-64-1 TVR emission calcs}

EPA Protocol for Equipment Leak Emisston Estimate
Table 24. Oil and Gas Production Operations
Average Emission Factors
\(\begin{array}{ll}\text { Weight percentage of VOC in the total organic compounds in gas (neglect non-organles)? } & 100 \% \\ \text { Welght percentage of VOC in the total organic compounds in oil (neglect non-organics)? } & 100 \%\end{array}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Equipment Type & Service & Screening Valu ( \(\mathrm{kg} / \mathrm{hi} / \mathrm{sourcs}\) ) & \begin{tabular}{l}
\[
0 \mathrm{OC}
\] \\
(lb/dayisoures)
\end{tabular} & Component Count & VOC emisslons (ib/day) \\
\hline \multirow[t]{4}{*}{Valves} & Gas & 4.5E-03 & \(2.381 \mathrm{E}-01\) & 54 & 12.86 \\
\hline & Heavy Oil & 8.4E-06 & 4.445E-04 & 0 & 0.00 \\
\hline & Light Oil & 2.5E-03 & 1.323E-0t & 0 & 0.00 \\
\hline & WateriOil & \(9.8 \mathrm{E}-05\) & \(5.185 \mathrm{E}-03\) & 0 & 0.00 \\
\hline \multirow[t]{4}{*}{Pump Seals} & Gas & \(2.4 \mathrm{E}-03\) & 1.270E-01 & 0 & 0.00 \\
\hline & Heavy Oil & N/A & N/A & 0 & N/A \\
\hline & Light Oil & 1.3E-02 & 6.878E-01 & 2 & 1.38 \\
\hline & Water/Oil & 2.4E-05 & 1.270E-03 & 0 & 0.00 \\
\hline \multirow[t]{4}{*}{Others} & Gas & 8.8E-03 & \(4.656 \mathrm{E}-01\) & 12 & 5.59 \\
\hline & Heavy Oid & 3.2E-05 & \(1.693 \mathrm{E}-03\) & 0 & 0.00 \\
\hline & Light Oil & \(7.5 \mathrm{E}-03\) & 3.968E-01 & 0 & 0.00 \\
\hline & Water/Oil & \(1.4 \mathrm{E}-02\) & \(7.408 \mathrm{E}-01\) & 0 & 0.00 \\
\hline \multirow[t]{4}{*}{Connectors} & Gas & \(2.0 \mathrm{E}-04\) & \(1.058 \mathrm{E}-02\) & 0 & 0.00 \\
\hline & Heavy Oil & 7.5E-06 & 3.968E-04 & 0 & 0.00 \\
\hline & Light Oil & 2.1E-04 & \(1.111 \mathrm{E}-02\) & 160 & 1.78 \\
\hline & Water/Oin & 1.1E-04 & \(5.820 \mathrm{E}-03\) & 0 & 0.00 \\
\hline \multirow[t]{4}{*}{Flanges} & Gas & 3.9E-04 & \(2.064 \mathrm{E}-02\) & 80 & 1.65 \\
\hline & Heavy Oil & 3.9E-07 & \(2.064 \mathrm{E}-05\) & 0 & 0.00 \\
\hline & Light Oil & 1.1E-04 & \(5.820 \mathrm{E}-03\) & 0 & 0.00 \\
\hline & Waterfoil & 2.9E-06 & \(1.534 \mathrm{E}-04\) & 0 & 0.00 \\
\hline \multirow[t]{4}{*}{Open-ended Lines} & Gas & 2.0E-03 & 1.058E-01 & 0 & 0.00 \\
\hline & Heaw Oil & \(1.4 \mathrm{E}-04\) & 7,408E-03 & 0 & 0.00 \\
\hline & Light Oil & 1.4E-03 & \(7.408 \mathrm{E}-02\) & 0 & 0.00 \\
\hline & WaledOit & 2.5E-04 & 1.323E-02 & 0 & 0.00 \\
\hline
\end{tabular}

Total VOC Emissions =

\section*{Chevron USA C-2872}

\section*{Project \# , Permit Unit \# C-2872-65-1 Draín Tank}

EPA Protocol for Equipment Laak Emission Estimate
Table 2-4. Oll and Gas Production Operations
Average Emission Factors
Weight percentage of VOC in the total organic compounds in gas (negiect non-organics)? \(100 \%\) Weight percentage of VOC in the total organic compounds in cil (neglect non-organics)?
\(100 \%\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Equipment Type & Service & \[
\begin{aligned}
& \text { Screening Valu } \\
& (\mathrm{kg} / \mathrm{hr} / \mathrm{source})
\end{aligned}
\] & OC ( \(\mathrm{fb} / \mathrm{day} / \mathrm{source}\) ) & Component Count & VOC emissions (bb/day) & \multirow[t]{5}{*}{} & \multirow{5}{*}{20\%} \\
\hline \multirow[t]{4}{*}{Valves} & Gas & \(4.5 \mathrm{E}-03\) & \(2.381 \mathrm{E}-01\) & 9 & 2.14 & & \\
\hline & Heavy Oil & \(8.4 \mathrm{E}-06\) & \(4.445 \mathrm{E}-04\) & 0 & 0.00 & & \\
\hline & Light Oil & \(2.5 \mathrm{E}-03\) & \(1.323 \mathrm{E}-01\) & 0 & 0.00 & & \\
\hline & Water\% \({ }^{\text {Of }}\) & 9.8E-05 & \(5.185 \mathrm{E}-03\) & 0 & 0,00 & & \\
\hline \multirow[t]{4}{*}{Pump Seals} & Gas & \(2.4 \mathrm{E}-03\) & 1.270E-01 & 0 & 0.00 & \multirow{4}{*}{7} & \multirow{8}{*}{20\%} \\
\hline & Heavy Oil & N/A & N/A & 0 & N/A & & \\
\hline & Ught Oil & 1.3E-02 & 6.878E-01 & 0 & 0.00 & & \\
\hline & Water/Oil & \(2.4 \mathrm{E}-0.0\) & 1.270E-03 & 0 & 0.00 & & \\
\hline \multirow[t]{4}{*}{Others} & Gas & 8.8E-03 & \(4.656 \mathrm{E}-01\) & 4 & 1.86 & \multirow[t]{4}{*}{3} & \\
\hline & Heavy Oil & 3.2E-05 & \(1.693 \mathrm{E}-03\) & 0 & 0.00 & & \\
\hline & Light Oil & \(7.5 \mathrm{E}-03\) & \(3.968 \mathrm{E}-01\) & 0 & 0.00 & & \\
\hline & Wateroil & 1.4E-02 & \(7.408 \mathrm{E}-01\) & 0 & 0.00 & & \\
\hline \multirow[t]{4}{*}{Connectors} & Gas & 2.0E-04 & \(1.058 \mathrm{E}-02\) & 0 & 0.00 & \multirow{4}{*}{20} & \multirow{4}{*}{20\%} \\
\hline & Heavy Oil & 7.5E-06 & \(3.968 \mathrm{E}-04\) & 0 & 0.00 & & \\
\hline & Light On & \(2.1 \mathrm{E}-04\) & 1.111E-02 & 24 & 0.27 & & \\
\hline & Water/Oil & 1.1E-04 & \(5.820 \mathrm{E}-03\) & 0 & 0.00 & & \\
\hline \multirow[t]{4}{*}{Fanges} & Gas & 3.9E-04 & \(2.064 \mathrm{E}-02\) & 30 & 0.62 & \multirow[t]{8}{*}{25} & 20\% \\
\hline & Heavy or & 3.9E-07 & \(2.064 E-05\) & 0 & 0.00 & & \\
\hline & Light Oit & 1.1E-04 & 5.820E-03 & 0 & 0.00 & & \\
\hline & Water/Oil & 2.9E-06 & \(1.534 \mathrm{E}-04\) & 0 & 0.00 & & \\
\hline Open-ended & Gas & \(2.0 \mathrm{E}-03\) & \(1.058 \mathrm{E}-01\) & 0 & 0.00 & & \\
\hline \multirow[t]{3}{*}{Lines} & Heavy Oir & \(1.4 \mathrm{E}-04\) & \(7.408 \mathrm{E}-03\) & 0 & 0.00 & & \\
\hline & Light Oil & \(1.4 \mathrm{E}-03\) & \(7.408 \mathrm{E}-02\) & 0 & 0.00 & & \\
\hline & Water/Oil & \(2.5 \mathrm{E}-04\) & 1.323E-02 & 0 & 0.00 & & \\
\hline
\end{tabular}

Chevron USA C-2872
Project \# , Permit Unit \# C-2872-66-1 3 phase separator V-100

> EPA Protocol for Equlpment Leak Emission Estimate
> Table 2-4. Oil and Gas Production Operations
> Average Emission Factors

Weight percentage of VOC in the total organic compounds in gas (neglect non-organics)? Weight percentage of VOC in the total orgenic compounds in oil (neglect non-organics)?
\(100 \%\) \(100 \%\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Equipment Type & Service & Screening Valu (kghrisounce) & OC (ib/day/source) & Component Count & VOC emissions ( \(\mathrm{Ib} / \mathrm{day}\) ) & \multirow{5}{*}{26} & \multirow{5}{*}{20\%} \\
\hline \multirow[t]{4}{*}{Valves} & Gas & 4.5E-03 & \(2.381 \mathrm{E}-01\) & 33 & 7.86 & & \\
\hline & Heavy Oil & \(8.4 E-06\) & \(4.445 \mathrm{E}-04\) & 0 & 0.00 & & \\
\hline & Light Oil & 2.5E-03 & 1.323E-01 & 0 & 0.00 & & \\
\hline & Water/Oil & 9.8E-05 & \(5.185 \mathrm{E}-03\) & 0 & 0.00 & & \\
\hline \multirow[t]{4}{*}{Pump Seals} & Gas & \(2.4 \mathrm{E}-03\) & \(1.270 \mathrm{E}-01\) & 0 & 0.00 & \multirow{4}{*}{0} & \multirow{4}{*}{20\%} \\
\hline & Heavy Oil & N/A & N/A & 0 & N/A & & \\
\hline & Light Oll & 1.3E-02 & \(6.878 \mathrm{E}-01\) & 0 & 0.00 & & \\
\hline & WaterIOil & 2.4E-05 & 1.270E-03 & 0 & 0.00 & & \\
\hline \multirow[t]{4}{*}{Others} & Gas & 8.8E-03 & \(4.656 \mathrm{E}-01\) & 4 & 1.86 & \multirow[t]{4}{*}{3} & \multirow[t]{4}{*}{20\%} \\
\hline & Heavy Oil & 3.2E-05 & \(1.693 \mathrm{E}-03\) & 0 & 0.00 & & \\
\hline & Light Oil & 7.5E-03 & \(3.968 \mathrm{E}-01\) & 0 & 0.00 & & \\
\hline & Water/Oil & \(1.4 \mathrm{E}-02\) & \(7.408 \mathrm{E}-01\) & 0 & 0.00 & & \\
\hline \multirow[t]{4}{*}{Connectors} & Gas & \(2.0 \mathrm{E}-04\) & \(1.058 \mathrm{E}-02\) & 0 & 0.00 & \multirow{4}{*}{130} & \multirow{4}{*}{20\%} \\
\hline & Heavy Oil & 7.5E-06 & \(3.968 \mathrm{E}-04\) & 0 & 0.00 & & \\
\hline & Light Oll & 2.1E-04 & 1.111E-02 & 156 & 1.73 & & \\
\hline & Water/Oㄱ & 1.1E-04 & \(5.820 \mathrm{E}-03\) & 0 & 0.00 & & \\
\hline \multirow[t]{4}{*}{Flanges} & Gas & \(3.9 \mathrm{E}-04\) & \(2.064 \mathrm{E}-02\) & 28 & 0.58 & \multirow[t]{8}{*}{23} & \multirow[t]{4}{*}{20\%} \\
\hline & Heavy Oin & 3.9E-07 & \(2.064 \mathrm{E}-05\) & 0 & 0.00 & & \\
\hline & Ught Oil & 1.1E-04 & 5.820E-03 & 0 & 0.00 & & \\
\hline & Water/Oil & 2.9E-106 & \(1.534 \mathrm{E}-04\) & 0 & 0.00 & & \\
\hline \multirow[t]{4}{*}{Open-ended Lines} & Gas & 2.0E-03 & \(1.058 \mathrm{E}-01\) & 0 & 0.00 & & \\
\hline & Heavy Oil & 1.4E-04 & \(7.408 \mathrm{E}-03\) & 0 & 0.00 & & \\
\hline & Light Oil & 1.4E-03 & \(7.408 \mathrm{E}-02\) & 0 & 0.00 & & \\
\hline & WaterYil & 2.5E-04 & 1.323E-02] & 0 & 0.00 & & \\
\hline
\end{tabular}

Total VOC Emisslons =

\section*{Chevron USA C-2872}

Project \# , Permit Unit \# C-2872-67-1 Waste Water Tank T-120
EPA Protocol for Equipment Leak Emission Estimate
Table 24. Oil and Gas Production Operations
Average Emission Factors
Weighi percentage of VOC in the total organic compounds in gas (neglect non-organics)? \(100 \%\)
Weight percentage of VOC in the total onganic compounds in oil (neglect non-organics)?
\(100 \%\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Equipment Type & Service & Screening Valu ( kg /he/source) & \begin{tabular}{l}
OC \\
(lb/day/source)
\end{tabular} & Component Coumt & VOC emissions (b/day) & \multirow[t]{5}{*}{} & \multirow{5}{*}{20\%} \\
\hline \multirow[t]{4}{*}{Valves} & Gas & 4.5E-03 & 2.3 E1E-01 & 17 & 4.05 & & \\
\hline & Heavy Oif & 8.4E-06 & 4.445E-04 & 0 & 0.00 & & \\
\hline & Light Oil & 2.5E-03 & \(1.323 \mathrm{E}-01\) & 0 & 0.00 & & \\
\hline & Water/Oil & \(9.8 \mathrm{E}-05\) & \(5.185 \mathrm{E}-03\) & 0 & 0,00 & & \\
\hline \multirow[t]{4}{*}{Purinp Seals} & Gas & 2.4E-03 & 1.270E-01 & 0 & 0.00 & \multirow{4}{*}{14} & \\
\hline & Heavy Oil & N/A & N/A & 0 & N/A. & & \\
\hline & Ught Oil & 1.3E-02 & 6.878E-01 & 0 & 0.00 & & \\
\hline & Water/Oil & 2.4E-05 & 1.270E-03 & 0 & 0.00 & & \\
\hline \multirow[t]{4}{*}{Others} & Gas & 8.8E-03 & 4.656E-01 & 4 & 1.86 & \multirow[t]{4}{*}{3} & \multirow[t]{4}{*}{20\%} \\
\hline & Heary Oil & 32E-05 & 1.693E-03 & 0 & 0.00 & & \\
\hline & Light Oil & 7.5E-03 & 3.968E-01 & 0 & 0.00 & & \\
\hline & Water/Oil & \(1.4 \mathrm{E}-02\) & 7.408E-01 & 0 & 0.00 & & \\
\hline \multirow[t]{4}{*}{Connectors} & Gas & 2.0E-04 & \(1.058 \mathrm{E}-02\) & 0 & 0.00 & & \\
\hline & Heavy Oil & 7.5E-06 & \(3.968 \mathrm{E}-04\) & 0 & 0.00 & & \multirow{3}{*}{20\%} \\
\hline & Light Oil & 2.1E-04 & \(1.161 E-02\) & 42 & 0.47 & \multirow[t]{2}{*}{35} & \\
\hline & Water/Oil & 1.1E-04 & \(5.820 \mathrm{E}-03\) & 0 & 0.00 & & \\
\hline \multirow[t]{4}{*}{Fianges} & Gas & 3.9E-04 & 2.064E-02 & 43 & 0.89 & \multirow[t]{8}{*}{35} & \multirow[t]{8}{*}{20\%} \\
\hline & Heavy Oil & \(3.9 \mathrm{E}-07\) & \(2.064 \mathrm{E}-05\) & 0 & 0.00 & & \\
\hline & Ulght Oil & 1.1E-04 & \(5.820 \mathrm{E}-03\) & 0 & 0.00 & & \\
\hline & Water/OH & 2.9E-06 & 1.534E-04 & 0 & 0.00 & & \\
\hline \multirow[t]{4}{*}{Open-ended Unes} & Gas & 2.0E-03 & \(1.058 \mathrm{E}-01\) & 0 & 0.00 & & \\
\hline & Heavy Oif & 1.4E-04 & \(7.408 \mathrm{E}-03\) & 0 & 0.00 & & \\
\hline & Ught Dil & 1.4E-03 & \(7.408 \mathrm{E}-02\) & 0 & 0.00 & & \\
\hline & Water/Oj & 2.5E-04 & \(1.323 \mathrm{E}-02\) & 0 & 0.90 & & \\
\hline
\end{tabular}

Total VOC Emissions =
\(7.3 \mathrm{lb} /\) day

\section*{ATTACHMENT V \\ Truck Load out Emissions}


Table 5.2-1 Saturation (S) Factors for Calculating Petroleum Liquid Loading Losses Cargo Carrier Mode of Operatlon S Factor

Tank Trucks and Rall Tank Cars Submerged loading of a clean cargo tank 0.50
Submerged loading: dedicated normal service 0.60
Submerged loading: dedicated vapor balance service 1.00
Splash loading of a clean cargo tank 1.45
Splash loading: dedicated normal service 1.45
Splash loading: dedicated vapor balance service 1.00
\(L L(\mathrm{lb} / 1000 \mathrm{gal})=12.46(\mathrm{~S})(\mathrm{P})(\mathrm{M})\)
\(S=\) Saturation Factor (see above)
\(P=\) true vapor pressure (see attached)
\(\mathrm{M}=\) Molecular weight of vapors (assume 80)
\(T=\) Temperature of liquid loaded \({ }^{\circ} \mathrm{R}\) (expected \(190^{\circ} \mathrm{F}\) )
\(L L=12.46(0.60)(4.0)(100 \mathrm{lb} / \mathrm{lb}-\mathrm{mole})=5.2 \mathrm{ib}-\mathrm{VOC} / 1,000 \mathrm{gal}\) loaded \(\left(120^{\circ} \mathrm{F}+460\right)\)

Uncontrolled Emisslons (lb/day) \(=\) [( \(5.2 \mathrm{lb}-V O C / 1,000\) gal loaded) *(476.17 bbl/day)* (42 gal/bbll]
\[
=103.1 \mathrm{lG} \text {-vOC/day uncontrolled }
\]

Controlled emissions (Ib/day), assuming a conservatlve 95\% CE from VR system:
\[
=(103.1)(1-.95)=5.2 \mathrm{lb}-\mathrm{VOC} / \mathrm{day}
\]

\section*{ATTACHMENT VI \\ Emissions Profiles}
\begin{tabular}{|ll|}
\hline Permil \#: C-2872-64-1 & Last Updated \\
Faclity: CHEVRON USA, & \(06 / 93 / 2014\) EDGEHILR \\
INC. & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Equipment Pre-Baselined: NO & NOX & S0X & PM10 & CO & VOC \\
\hline Potential to Emit \(\langle(\mathrm{lb} / \mathrm{Yr})\) ) & 0.0 & 0.0 & 0.0 & 0.0 & 11242.0 \\
\hline & & & & & 30.8 \\
\hline Daily Emis. Limit (b/Day) & 0.0 & 0.0 & 0.0 & 0.0 & 30.8 \\
\hline \begin{tabular}{l}
Quarterly Net Emissions Change \\
(ib/Qtr)
\end{tabular} & & & & & \\
\hline Q1: & 0.0 & 0.0 & 0.0 & 0.0 & 2810.0 \\
\hline Q2: & 0.0 & 0.0 & 0.0 & 0.0 & 2810.0 \\
\hline Q3: & 0.0 & 0.0 & 0.0 & 0.0 & 2811.0 \\
\hline Q4: & 0.0 & 0.0 & 0.0 & 0.0 & 2811.0 \\
\hline Check if offsets are triggered but exemption applies & N & \(N\) & N & N & \(N\) \\
\hline Offset Ratio & & & & & \\
\hline & & & & & \\
\hline Quarterly Offset Amounts (lb/Qtr) & & & & & \\
\hline Q1: & & & & & \\
\hline Q2: & & & & & \\
\hline Q3: & & & & & \\
\hline Q4: & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|ll|}
\hline Permit \#: C-2872-65-1 & Last Updated \\
Facility: CHEVRON USA. & \(06 / 02 / 2014\) EDGEHILR \\
INC. & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Equipment Pre-Baselined: NO & NOX & SOX & PM10 & CO & VOC \\
\hline Potential to Emit ( \(1 \mathrm{l} / \gamma_{\text {r }}\) ): & 0.0 & 0.0 & 0.0 & 0.0 & 1789.0 \\
\hline Daily Emis. Limit (lb/Day) & 0.0 & 0.0 & 0.0 & 0.0 & 4.9 \\
\hline \begin{tabular}{l}
Quarterly Net Emissions Change \\
( \(\mathrm{lb} / \mathrm{Qtr}\) )
\end{tabular} & & & & & \(\square\) \\
\hline Q1: & 0.0 & 0.0 & 0.0 & 0.0 & 447.0 \\
\hline Q2: & 0.0 & 0.0 & 0.0 & 0.0 & 447.0 \\
\hline Q3: & 0.0 & 0.0 & 0.0 & 0.0 & 447.0 \\
\hline Q4: & 0.0 & 0.0. & 0.0 & 0.0 & 448.0 \\
\hline Check if offsets are triggered but exemption applies & N & N & N & N & N \\
\hline Offset Ratio & & & & & \\
\hline & & & & & \\
\hline Quarterly Offset Amounts ( \(\mathrm{lb} / \mathrm{Qtr}\) ) & & & & & \\
\hline Q1: & & & & & \\
\hline Q2: & & & & & \\
\hline Q3: & & & & & \\
\hline Q4: & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|ll|}
\hline Permit \#: C-2872-66-1 & Last Updated \\
Facility: CHEVRONUSA, & \(06 / 02 / 2014\) EDGEHILR \\
INC. & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Equipment Pre-Baselined: NO & NOX & SOX & PM10 & CO & VOC \\
\hline Potential to Emit ( \(\mathrm{l} / \mathrm{/} / \mathrm{r}\) ): & 0.0 & 0.0 & 0.0 & 0.0 & 4580.0 \\
\hline & & & & & \\
\hline Daily Emis. Limit (lb/Day) & 0.0 & 0.0 & 0.0 & 0.0 & 12.0 \\
\hline & & & & & \\
\hline Quarterly Net Emissions Change
(Ib/Qtr) & & & & & \\
\hline Q1: & 0.0 & 0.0 & 0.0 & 0.0 & 1145.0 \\
\hline Q2: & 0.0 & 0.0 & 0.0 & 0.0 & 1145.0 \\
\hline Q3: & 0.0 & 0.0 & 0.0 & 0.0 & 1145.0 \\
\hline Q4: & 0.0 & 0.0 & 0.0 & 0.0 & 1145.0 \\
\hline Check if offsets are triggered but exemption applies & \(N\) & N & \(N\) & N & N \\
\hline Offset Ratio & & & & & \\
\hline & & & & & \\
\hline Quarterly Offset Amounts (ibiQtr) & & & & & \\
\hline - Q1: & & & & & \\
\hline Q2: & & & & & \\
\hline Q3: & & & & & \\
\hline Q4: & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|ll|}
\hline Permit \#: C-2872-67-1 & Last Updated \\
Facilly: CHEVRON USA, & \(06 / 02 / 2014\) EDGEHILR \\
INC. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Equipment Pre-Basalined: NO & NOX & SOX & PM10 & CO & VOC \\
\hline Potential to Emit ( \((\mathrm{l} / \mathrm{Y} \mathrm{r})\) : & 0.0 & 0.0 & 0.0 & 0.0 & 2665.0 \\
\hline Daily Emis. Limit (lb/Day) & 0.0 & 0.0 & 0.0 & 0.0 & 7.3 \\
\hline Quarterly Net Emisslons Change (lb/Qtr) & & & & & \\
\hline Q1: & 0.0 & 0.0 & 0.0 & 0.0 & 666.0 \\
\hline Q2: & 0.0 & 0.0 & 0.0 & 0.0 & 666.0 \\
\hline Q3: & 0.0 & 0.0 & 0.0 & 0.0 & 666.0 \\
\hline Q4: & 0.0 & 0.0 & 0.0 & 0.0 & 667.0 \\
\hline Check if offsets are triggered but exemption applies & N & N & N & N & N \\
\hline - Offset Ratio & & & & & \\
\hline & & & & & \\
\hline Quarterly Offset Amounts (lb/Qtr) & & & & & \\
\hline Q1: & & & & & \\
\hline Q2: & & & & & \\
\hline Q3: & & & & & \\
\hline Q4: & & & & & \\
\hline
\end{tabular}
\begin{tabular}{lll}
\hline Permit \#: C-2872-68-1 & Last Updated \\
Facilly: CHEVRON USA. & \(06 / 09 / 2014\) EDGEHILR \\
iNC. & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Equipment Pre-Baselined: NO & NOX & SOX & PM10 & CO & YOC \\
\hline Potential to Emit ( \(\mathrm{lb} / \mathrm{Y} \mathrm{c}\) ): & 0.0 & 0.0 & 0.0 & 0.0 & 405.0 \\
\hline & & & & & \\
\hline Daily Emis. Limit (Ib/Day) & 0.0 & 0.0 & 0.0 & 0.0 & 1.1 \\
\hline & & & & & \\
\hline \begin{tabular}{l}
Quarterly Net Emissions Change \\
(Ib/atr)
\end{tabular} & & & & & \\
\hline Q1: & 0.0 & 0.0 & 0.0 & 0.0 & 101.0 \\
\hline Q2: & 0.0 & 0.0 & 0.0 & 0.0 & 101.0 \\
\hline Q3: & 0.0 & 0.0 & 0.0 & 0.0 & 101.0 \\
\hline Q4: & 0.0 & 0.0 & 0.0 & 0.0 & 102.0 \\
\hline & & & & & \\
\hline Check if offsets are triggered but exemption applies & N & \(N\) & \(N\) & N & N \\
\hline & & & & & \\
\hline Offset Ratio & & & & & \\
\hline & & & & & \\
\hline Quarterly Offset Amounts ( \(\mathrm{lb/Qtr}\) ) & & & & & \\
\hline Q1: & & & & & \\
\hline Q2: & & & & & \\
\hline Q3: & & & & & \\
\hline Q4: & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|ll|}
\hline Permil \#: C-2872-69-0 & Last Updated \\
Facility: CHEVRON USA, & \(06 / 09 / 2014\) EDGEHILR \\
INC. & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Equipment Pre-Baselined: NO & NOX & SOX & PM10 & 60 & VOC \\
\hline Potential to Emit ( \((\mathrm{b} / \mathrm{Fr})\) : & 9059.0 & 683.0 & 3464.0 & 49293.0 & 8393.0 \\
\hline Daily Emis. Limit (li/Day) & 24.8 & 1.9 & 9.5 & 135.1 & 23.0 \\
\hline \begin{tabular}{l}
Quarterly Net Emissions Change \\
(lb/Otr)
\end{tabular} & & & & & \\
\hline Q1: & 2264.0 & 170.0 & 866.0 & 12323.0 & 2098.0 \\
\hline Q2: & 2265.0 & 171.0 & 866.0 & 12323.0 & 2098.0 \\
\hline Q3: & 2265.0 & 171.0 & 866.0 & 12323.0 & 2098.0 \\
\hline Q4: & 2265.0 & 171.0 & 866.0 & 12324.0 & 2099.0 \\
\hline Check if offsets are triggered but exemption applies & N & N & N & N & N \\
\hline Offset Ratio & & & & & 1.5 \\
\hline & & & & & \\
\hline Quarterly Offset Amounts (lib/Qtr) & & & & & \\
\hline - Q1: & & & & & 2355.0 \\
\hline Q2: & & & & & 2355.0 \\
\hline -- Q3: & & & & & 2355.0 \\
\hline Q4: & & & & & 2355.0 \\
\hline
\end{tabular}

\section*{ATTACHMENT VII \\ BACT Guidelines}

\section*{San Joaquin Valley \\ Unified Air Pollution Control District}

\section*{Best Available Control Technology (BACT) Guideline 1.4.2*}

Lasl Updete 12/31/1998
Waste Gas Flare - Incinerating Produced Gas
\begin{tabular}{|c|c|c|c|}
\hline Pollutant & Achleved in Practice or contained In the SIP & Technologically Feasibla & Alternate Basic Equipment \\
\hline VOC & Sleam assisted or Airassisted or Coands effect burner, when stearn unavailable & & \\
\hline \multirow[t]{2}{*}{SOX} & Steam asslsted or Airassisted or Coanda effect burner, when sleam unavallable & Precombustion SOX scrubbing system (non-emergency flares only.) & \\
\hline & Pllot Light fired solely on LPG or natural gas. & & \\
\hline \multirow[t]{2}{*}{PM10} & Steam assisted or Airassisted or Coanda effect bumer, when steam unavallable & & \\
\hline & Pilot Light fired solely on LPG or natural gas. & & \\
\hline NOX & Steam assisted or Airassisted or Coanda effect bunner, when steam unavailabla & & \\
\hline CO & Steam assisled or Airassisted or Coanda effect burner, when stegm unavailable & & \\
\hline
\end{tabular}

BACT is the most stingent control technique for the emissions unil and class of source. Controt technietes that are nol achleved in practlce or contained in 4 a state implementallon plan musi be cosi effecluve as wall as feasibla. Economic analyals to demonstrale cos: effectiveness is required for all determinalions that are not achleved in practice or contained'In an EPA approwad State Implemenlation Plan.
*This is a Summary Page for this Class of Source

\section*{San Joaquin Valley \\ Unified Air Pollution Control District}

\section*{Best Available Control Technology (BACT) Guideline 7.3.1* \\ Las: Update 10/1/2002}

Petroleum and Petrochemical Production - Fixed Roof Organic
Liquid Storage or Processing Tank, \(<5,000\) bbl Tank capacity **
\begin{tabular}{|c|c|c|c|}
\hline Pollutant & Achieved in Practice or contained in the S.P & Technologically Feaslble & Altermate Baslc Equtpment \\
\hline VOC & PV-vent get to whinn 10\% of maximum allowable pressure & \(89 \%\) conirol (Waste gas tncinerated in steam generator, heater treater, or other flred equipment and inspection and maintenance program; transfer of noncondensable vapors to gas plpeline; reinjection to formation (If appropriate wellis are availabie); or equal). & \\
\hline
\end{tabular}

\footnotetext{
** Converted from Determinations 7.1.11 (10/01/02).
BACT is the most stringent conkol technique for the emisslons unit and class of source. Confrol techniques that are not achieved in practice or contalined In \& a blate implementation plan must be cost effective as well as leasible. Economic analysis to demonishate cobl effecilveness is requlred for all determinalions that are not achleved in pracica or contalned in an EPA approved State Implementation Flan.

Thls is a Summary Page for thls Class of Source
}

\title{
ATTACHMENT VIII BACT Analyses
}

\section*{For tanks and 3 phase separator vessels}

\section*{C-2872-64-1 though '-67-1}

\section*{Step 1 - Identify All Possible Control Technologies}

BACT Guideline 7.3.1 lists the controls that are considered potentially applicabie to fixedroof organic liquid storage or processing tank \(<5,000 \mathrm{bbl}\) tank capacity. The VOC control measures are summarized below.

Current District BACT Guideline 7.3.1
\begin{tabular}{|c|c|c|c|}
\hline & Achleved in Practice BACT & Technologically Feasible BACT & Alternate Basic Equipment \\
\hline VOC & PV relief valve set to within \(10 \%\) of maximum allowable pressure. & 99\% control (waste gas incinerated in steam generator, heater treater, or other fired equipment and \(1 \& \mathrm{M}\) program; transfer of uncondensed vapors to gas plpeline or reinjection to formation (if appropriate wells are available); or equal). & None identifled \\
\hline
\end{tabular}

\section*{Step 2 - Eliminate Technologically Infeasible Options}

The technologically feasible control measures of transferring non-condensable vapors to gas pipeline is not feasible because a gas plpeline does not exist at the project site. All of the above remaining control options identified above are technologically feasible for the proposed equipment and are not eliminated.

\section*{Step. 3 -Rank Remaining Control Technologies by Control Effectiveness}
1. \(99 \%\) control (waste gas incinerated in steam generator, heater treater, or other fired equipment and Inspection and maintenance program; transfer of uncondensed vapors to gas pipeline or reinjection to formation (if appropriate wells are availabie).
2. PV relief valve set to within \(10 \%\) of maximum allowable pressure.

\section*{Step 4 - Cost Effectiveness Analysis}

The proposed tanks will be connected to a vapor recovery system venting a flare and/or DOGGR-approved disposal well(s) - both with 99\% vapor control efficiency.

Therefore, the highest ranked control identified is proposed. A cost effectiveness analysis is not required.

\section*{Step 5 - Select BACT}
\(99 \%\) control (inspection and maintenance program; incineration of collected vapors in flare or reinjection of uncondensed vapors to formation.

\title{
Top Down BACT Analysis for Flare
}
C-2872-69-0

\section*{Step 1 - Identify All Possible NOx and \(\mathrm{PM}_{10}\) Control Technologies}

BACT Guideline 1.4.2 lists the controls that are considered potentially applicable to waste gas flares incinerating produced gas. The proposed flare is subject to BACT for NOx and PM10 emissions > \(2 \mathrm{lb} /\) day. The control measures are summarized below.

\section*{Current District BACT Guideline 1.4.2}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{1}{|c|}{\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{\begin{tabular}{c} 
Achleved in Practice \\
BACT
\end{tabular}} & \begin{tabular}{c} 
Technologically Feasible \\
BACT
\end{tabular} \\
\hline \hline \begin{tabular}{l} 
NOX \\
and \\
VOC
\end{tabular} & \begin{tabular}{l} 
Steam or Air assist or Coanda \\
effect burner, when steam \\
unavailable.
\end{tabular}
\end{tabular} None Identified } & \begin{tabular}{c} 
Alternate Basic \\
Equipment
\end{tabular} \\
\hline PM 10 & \begin{tabular}{l} 
Steam or Air assist.or Coanda \\
effect burner, when steam \\
unavalable. Pllot light fired \\
solely on LPG or natural gas.
\end{tabular} & & None ldentified \\
\hline
\end{tabular}

Step 2 - Eliminate Technologically Infeasible Options
There are no technologically feasible options listed in BACT Guideline 1.4.2.

\section*{Step 3 - Rank Remaining Control Technologies by Control Effectiveness}

NOx and VOCs: Steam or Air assist or Coanda effect burner, when steam unavailable.
PM10: Steam or Air assist or Coanda effect burner, when steam unavailable. Pilot light fired solely on LPG or natural gas.

\section*{Step 4-Cost Effectivenass Analysis}

The proposed flare is equipped with air assist and uses propane as pilot fuel. Therefore, the highest ranked control identified is proposed for NOX, VOCs, and \(\mathrm{PM}_{10}\). A cost effectiveness analysis is not required.

\section*{Step 5 - Select BACT}

NOx: Steam or Air assist or Coanda effect burner, when steam unavailable.
PM10: Steam or Air assist or Coanda effect bürner, when steam unavailable. Pilot light fired solely on LPG or natural gas.

\title{
San Joaquin Valley Air Pollution Control District Risk Management Review
}
\begin{tabular}{ll} 
To: & Richard Edgehill - Permit Services \\
From: & Kyle Melching - Technical Services \\
Date: & June 10, 2014 \\
Facility Name: & Chevron USA, Inc. \\
Location: & W. Palmer Ave. \& Calavaras Ave., Coalinga \\
Application \#(s): & C-2872-64-1 thru 68-1 \&69-0 \\
Project \#: & C-1141400
\end{tabular}
A. RHR SUMMARY
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{RMR Summary} \\
\hline Categorles & Oil Fleld Fugitlves (Unlts 64-1 thru 68-1) & \begin{tabular}{l}
Waste Gas Flare \\
(Units 69-0)
\end{tabular} & Project Totals & Facillty Totals \\
\hline Priorlizatlon Score & 0.00 & 0.00 & 0.00 & \(>1\) \\
\hline Acute Hazard Index & 0.79 & 0.00 & 0.79 & 0.79 \\
\hline Chronic Hazard Index & 0.01 & 0.00 & 0.01 & 0.01 \\
\hline Max Indivldual Cancer Risk (10E-6) & 8.9E-07 & 2.41E-07 \({ }^{1}\) & \(1.13 \mathrm{E}-06\) & \(2.55 \mathrm{E}-06\) \\
\hline T-BACT Required? & No & No & & \\
\hline Special Permit Conditions? & Yes & Yes & & \\
\hline
\end{tabular}

\section*{Proposed Permit Conditions}

To ensure that human health risks will not exceed District allowable levels; the following permit conditions musl be included for:

Unit 69-0:
1. The exhaust stack shall vent vertically upward. The vertical exhaust flow shall not be impeded by a rain cap (flapper ok), roof overhang, or any other obstruction. [District Rule 4102]

\section*{I. Project Description}

Technical Services received a request on December 16, 2013, to perform a Risk Management Review (RMR) and Ambient Air Quality Analysis (AAQA)tor the installation of up to 1000 bbl crude oil storage and vapor control system including an electric compressor (C-2872-64-1), and up to 1000 bbl crude oil drain tank (C-2872-65-1), a horizontal 3-Phase Separator (C-2872-66-1), and up to 1000 bbl crude oil wash tank (C-2872-67-1). An existing LACT unit will be listed on C-2872-64. An existing truck load out operation (loading rack \& pumps) will be permitted separately (C-2872-68-1). A 49.9 MMBtu/hr waste gas flare will also be under analysis. Upon completion of this project the ATC from project C-1133078 will be deleted

\section*{II. Analysis}

Toxic emissions from Oilfield Fugitlves were calculated using emission factors based on the 1981 California Polytechnic State University study, Development of Species Profiles for Selected Organic Emission Sources. Toxic emissions for this proposed unit were also calculated using 2001 Ventura County's Air Pollution Control District's emission factors for Natural Gas Fired external combustion and on a refinery gas composition analysls from the 2005 report FINAL REPORT Test of TDA's Direct Oxidation Process for Sulfur Recovery. In accordance with the District's Risk Management Policy for Permitting New and Modified Sources (APR 1905-1, March 2, 2001), risks from the project were prioritized using the procedures in the 1990 CAPCOA Facility Prloritization Guidelines and incorporated in the District's HEART's database. The prioritization score for the project was less than 1.0 (see RMR Summary Table); however, the facility's combined prioritization scores totaled to greater than one. Therefore, a refined Health Risk Assessment was required and performed for the project. AERMOD was used with source parameters outlined below and concatenated 5 -year meteorological data from Turk to determine maximum dispersion factors at the nearest residential and business receptors. The dispersion factors were input into the HARP model to calculate the Chronic and Acute Hazard Indices and the Carcinogenic Risk.

The following parameters were used for the review:
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{5}{|c|}{ AREA Source - Analysis Parameters (Unit 64- \(\uparrow\) ) } \\
\hline Source Type & Area & Closest Receptor (m) & 805 \\
\hline Average Release Helght ( m ) & 1.67 & Type of Receptor & \begin{tabular}{c} 
Businessi \\
Residence
\end{tabular} \\
\hline Radius of Circle (m) & 8.5 & Location Type & Rural \\
\hline Unit 64-1 VOC Emlssions (b/hr) & 1.3 & Unit 64-1 VOC Emisslons (b/yr) & 11,242 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{5}{|c|}{ AREA Source - Analysis Parameters (Unit 65-1) } \\
\hline Source Type & Area & Closest Receptor (m) & 805 \\
\hline Average Release Height (m) & 1.67 & Type of Receptor & \begin{tabular}{c} 
Business/ \\
Residence
\end{tabular} \\
\hline Radius of Circle (m) & 8.5 & Location Type & Rural \\
\hline Unit 65-1 VOC Emlsslons (Ib/hr) & 0.2 & Unit 65-1 VOC Emisstons (blyr) & 1,789 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ AREA Source - Analysis Parameters (Unlt 66-1) } \\
\hline Source Type & Area & Closest Receptor (m) & 805 \\
\hline Average Release Height (m) & 5.49 & Type of Receptor & \begin{tabular}{c} 
Business \\
Residence
\end{tabular} \\
\hline Radius of Circle (m) & 5.26 & Location Type & Rural \\
\hline Unit 66-1 VOC Emisslons (Ib/hr) & 0.5 & Unit 66-1 VoC Emissions (Ibiyr) & 4,380 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{5}{|c|}{ AREA Source - Analysis Parameters (Unit 67-1) } \\
\hline Source Type & Area & Closest Receptor (m) & 805 \\
\hline Average Release Height (m) & 1.67 & Type of Receptor & \begin{tabular}{c} 
Businessi \\
Residence
\end{tabular} \\
\hline Radius of Circle (m) & 8.5 & Locatlon Type & Rural \\
\hline Unit 67-1 VOC Emissions ( (b/hr) & 0.3 & Unit 67-1 VoC Emissions (Ib/y) & 2,665 \\
\hline
\end{tabular}

AREA Source - Analys is Parameters (Unit 68-1)
\begin{tabular}{|c|c|c|c|}
\hline Source Type & Area & Closest Receptor (m) & 805 \\
\hline Average Release Helght (m) & 0.3 & Type of Receptor & \begin{tabular}{c} 
Businesst \\
Residence
\end{tabular} \\
\hline Length of Sides ( \(\mathbf{m}\) ) & 10.21 & Location Type & Rural \\
\hline Unit 68-1 VOC Emissions ( \(\mathrm{lb} / \mathrm{hr}\) ) & 0.22 & Unlt 68-1 Voc Emissions (lb/yr) & 1,930 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ AREA Source - Analysis Parameters (Unit 69-0) } \\
\hline Source Type & Point & Closest Receptor \((\mathrm{m})\) & 805 \\
\hline Stack Helght \((\mathrm{m})\) & 1.67 & Type of Receptor & \begin{tabular}{c} 
Business \(/\) \\
Residence
\end{tabular} \\
\hline Stack Dlameter \((\mathrm{m})\) & 8.5 & Locatlon Type & Rural \\
\hline Stack Temp. \((\mathrm{K})\) & 1273 & Waste Gas Usage (MMscf/hr) & 0.049 \\
\hline Stack Velocity \((\mathrm{m} / \mathrm{s})\) & 16.33 & Waste Gas Usage (MMscf/yr) & 133.23 \\
\hline
\end{tabular}

Technical Services performed modeling for criteria pollutants \(\mathrm{CO}, \mathrm{NOX}, \mathrm{SOx}\) and \(\mathrm{PM}_{10}\); as well as a RMR. The emission rates used for criteria pollutant modeling were \(5.63 \mathrm{lb} / \mathrm{hr}\) and \(49,293 \mathrm{lb} / \mathrm{yr} \mathrm{CO}, 1.03 \mathrm{lb} / \mathrm{hr}\) and \(9,059 \mathrm{lb} / \mathrm{yr} \mathrm{NOx}, 0.08 \mathrm{lb} / \mathrm{hr}\) and \(683 \mathrm{lb} / \mathrm{yr} \mathrm{SOx}\), and \(0.4 \mathrm{lb} / \mathrm{hr}\) and \(3,464 \mathrm{lb} / \mathrm{yr}\) PM \(\mathrm{F}_{3}\). AAQA modeting was only performed for Unit 69-0 since that is the only unit that contains \(\mathrm{CO}, \mathrm{NO}_{x}, \mathrm{SO}_{x}\) and \(\mathrm{PM}_{30}\) emissions.

The results from the Criteria Pollutant Modeling are as follows:

\section*{Criteria Pollutant Modeling Results*}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Unit \(69-0\) & 1 Hour & 3 Hours & 8 Hosrs. & 24 Hours & Annual \\
\hline CO & Pass & X & Pass & X & X \\
\hline \(\mathrm{NO}_{x}\) & Pass & X & X & X & Pass \\
\hline \(\mathrm{SO}_{x}\) & Pass & Pass & X & Pass & Pass \\
\hline \(\mathrm{PM}_{10}\) & X & X & \(X\) & Pass \(^{2}\) & Pass \\
\hline \(\mathrm{PM}_{25}\) & X & X & X & Pass \(^{2}\) & Pass \(^{2} \ldots\) \\
\hline
\end{tabular}
*Results were taken from the attached PSD spreadsheot.
'The project was compared to the 1 -hour NO2 National Amblent Alr Qualty Standard that became effective on April 12, 2010 using the District's approved procedures.
\({ }^{2}\) The criterta pollutants are below EPA's level of significance as found in 40 CFF Part 51.165 (b)(2).

\section*{III. Conclusions}

\section*{Units 64-1 thru 68-1:}

The acute and chronic indices are below 1.0; and the maximum individual cancer risk associated with these units is 8.9E-07; which is less than the 1 in a million threshold. In accordance with the District's Risk Management Policy, these units are approved without Toxic Best Available Control Technology (T-BACT),

\section*{Units 69-0:}

The emissions from the proposed equipment will not cause or contribute significantly to a violation of the State and National AAQS.

The acute and chronic indices are below 1.0; and the maximum individual cancer risk associated with this unit is 2.41E-07; which is less than the 1 in a million threshold. In accordance with the District's Risk Management Policy, the unit is approved without Toxic Best Available Control Technology (T-BACT).

To ensure that human health risks will not exceed District allowable ievels; the permit conditions listed on Page 1 of this report must be included for the proposed unit.

These conclusions are based on the data provided by the applicant and the project engineer. Therefore, this analysis is valid only as long as the proposed data and parameters do not change.

\section*{IV. Attachments}
A. RMR request from the project engineer
B. Additional information from the applicant/project engineer
C. Prioritization score w/ toxic emissions summary
D. HARP Risk Report
E. Facility Summary
F. AAQA Summary
G. AAQA Parameter Summary

\section*{ATTACHMENT IX HRA and AAQA}

\section*{San Joaquin Valley Air Pollution Control District Risk Management Review}
\begin{tabular}{ll} 
To: & Richard Edgenill - Permit Services \\
From: & Kyle Melching - Technical Services \\
Date: & Jure 10, 2014 \\
Facility Name: & Chevron USA, Inc. \\
Location: & W. Palmer Ave. \& Calavaras Ave., Coalinga \\
Application \#(s); & C-2872-64-1 thru 68-1 \& 69-0 \\
Project \#: & C-1141400
\end{tabular}

\section*{A. RMR SUMMARY}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{RMR Summary} \\
\hline Categorles & Oll Fleld Fugltives (Units 64-1 thru 68-1) & Waste Gas Flare (Units 69-0) & Project Totals & Facllity Totals \\
\hline Prioritization Score & 0.00 & 0.00 & 0.00 & \(>1\) \\
\hline Acute Hazard Index & 0.79 & 0.00 & 0.79 & 0.79 \\
\hline Chronic Hazard Index & 0.01 & 0.00 & 0.01 & 0.01 \\
\hline Max Indlvidual Cancer Risk (10E-6) & 8.9E-07 \({ }^{1}\) & 2.4'E-07 & 1.13E-06 & \(2.55 \mathrm{E}-06\) \\
\hline T-BACT Required? & No & No & & \\
\hline Special Permit Conditlons? & Yes & Yes & & \\
\hline
\end{tabular}

\section*{Proposed Permit Conditlons}

To ensure that human health risks will not exceed District aliowable levels; the following permit conditions must be included for:

Unit 69-0:
1. The exhaust stack shall vent vertically upward. The vertical exhaust flow shall not be impeded by a rain cap (flapper ok), roof overhang, or any other obstruction. (District Rule 4102]

\section*{1. Project Description}

Technical Services received a request on December 16, 2013, to perform a Risk Management Review (RMR) and Ambient Alr Quality Analysis (AAQA)for the installation of up to 1000 bbl crude oil storage and vapor control system including an electric compressor (C-2872-64-1), and up to 1000 bbl crude oil drain tank (C-2872-65-1), a horzontal 3-Fhase Separator (C-2872-66-1), and up to 1000 bbl crude oil wash tank (C-2872-67-1). An existing LACT unit will be listed on C-2872-84. An existing truck load out operation (loading rack \& pumps) will be permitted separately (C-2872-68-1). A \(49.9 \mathrm{MMBtu} / \mathrm{hr}\) waste gas flare will also be under analysis. Upon completion of this project the ATC from project C-1133078 will be deleted

\section*{II. Analysis}

Toxic emissions from Oilfield Fugitives were calculated using emission factors based on the 1991 California Polytechnic State University study, Development of Species Profiles for Selected Organic Emission Sources. Toxic emissions for this proposed unit were also caiculated using 2001 Ventura County's Air Pollution Control District's emission faciors for Natural Gas Fired external combustion and on a refinery gas composition analysis from the 2005 report FINAL REPORT Test of TDA's Direct Oxidation Process for Sulfur Recovery. In accordance with the District's Risk Management Policy for Permitting New and Modified Sources (APR 1905-1, March 2, 2001), risks from the project were prioritized using the procedures in the 1990 CAPCOA Facility Prioritization Guidelines and incorporated in the District's HEART's database. The prioritization score for the project was less than 1.0 (see RMR Summary Table); however, the facility's combined prioritization scores totaled to greater than one. Therefore, a refined Health Risk Assessment was required and performed for the project. AERMOD was used with source parameters outlined below and concatenated 5 -year meteorological data from Turk to determine maximum dispersion factors at the nearest residential and business receptors. The dispersion factors were input into the HARP model to calculate the Chronic and Acute Hazard indices and the Carcinogenic Risk.

The following parameters were used for the review:
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ AREA Source - Analysis Parameters (Unit 64-1) } \\
\hline Source Typa & Area & Closest Receptor (m) & B05 \\
\hline Average Release Height (m) & 1.67 & Type of Receptor & \begin{tabular}{c} 
Business \\
Residence
\end{tabular} \\
\hline Radius of Clrcle (m) & 8.5 & Location Type & Rural \\
\hline Unit 64-1 VOC Emissions (lb/hr) & 1.3 & Unit 64-1 VOC Emlssions (Ib/yr) & 11,242 \\
\hline
\end{tabular}
\(\left.\)\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{5}{|c|}{ AREA Source - Analysis Parameters (Unit 65-1) } \\
\hline Source Type & Area & Closest Receptor (m) & 805 \\
\hline Average Release Height (m) & 1.67 & & Type of Receptor
\end{tabular} \begin{tabular}{c} 
8usiness/ \\
Residence
\end{tabular} \right\rvert\,
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{5}{|c|}{ AREA Source - Analysis Parameters (Unit 66-1) } \\
\hline Source Type & Area & Closest Receptor (m) & 805 \\
\hline Average Release Helght (m) & 5.49 & Type of Receptor & \begin{tabular}{c} 
Business \(/\) \\
Residence
\end{tabular} \\
\hline Radius of Circle (m) & 5.26 & Locatlon Type & Rural \\
\hline Unit 66-1 VOC Emissions (lb/hr) & 0.5 & Unit 66-1 Voc Emlssions (lb/yr) & 4.380 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ AREA Source - Analysls Parameters (Unit 67-1) } \\
\hline Source Type & Area & Closest Receptor (m) & 805 \\
\hline Average Release Height (m) & 1.67 & Type of Receptor & \begin{tabular}{c} 
Business \(/\) \\
Residence
\end{tabular} \\
\hline Radius of Clrcle (m) & 8.5 & Locatlon Type & Rural \\
\hline Unit 67-1 VOC Emlssions (lb/hr) & 0.3 & Unlt 67-1 VOC Emsssions (lblyr) & 2,665 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{5}{|c|}{ AREA Source - Analysis Parameters (Unit 68-1) } \\
\hline Source Type & Area & Closest Receptor (m) & 805 \\
\hline Average Release Helght (m) & 0.3 & Type of Receptor & \begin{tabular}{c} 
Business \\
Resldence
\end{tabular} \\
\hline Length of Sides (m) & 10.21 & Location Type & Rural \\
\hline Unit 68-1 VOC Emissions (ib/hr) & 0.22 & Unit 88-1 VOC EmlssIons (Iblyr) & 1.930 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ AREA Source - Analysis Parameters (Unit 69-0) } \\
\hline Source Type & Point & Closest Receptor (m) & 805 \\
\hline Stack Helght (m) & 1.67 & Type of Receptor & \begin{tabular}{c} 
Business/ \\
Residence
\end{tabular} \\
\hline Stack Dlameter (m) & 8.5 & Location Type & Rural \\
\hline Stack Temp. (K) & 1273 & Waste Gas Usage (MMscf/hr) & 0.049 \\
\hline Stack Velocity (m/s) & 16.33 & Waste Gas Usage (MMscf/yr) & 133.23 \\
\hline
\end{tabular}

Techinical Services performed modeling for criteria pollutants \(\mathrm{CO}, \mathrm{NOX}, \mathrm{SOx}\) and \(\mathrm{PM}_{10}\); as well as a RMR. The emission rates used for criteria pollutant modeling were \(5.63 \mathrm{lb} / \mathrm{hr}\) and \(49,293 \mathrm{lb} / \mathrm{yr} \mathrm{CO}, 1.03 \mathrm{lb} / \mathrm{hr}\) and \(9,059 \mathrm{lb} / \mathrm{yr} \mathrm{NOx}, 0.08 \mathrm{lb} / \mathrm{hr}\) and \(683 \mathrm{lb} / \mathrm{yr} \mathrm{SOx}\), and \(0.4 \mathrm{lb} / \mathrm{hr}\) and \(3,464 \mathrm{tb} / \mathrm{yr} \mathrm{PM}_{10}\). AAQA modeling was only performed for Unit 69-0 since that is the only unit that contains \(\mathrm{CO}, \mathrm{NO}_{\mathrm{x}} \mathrm{SO}_{\mathrm{x}}\) and \(\mathrm{PM}_{10}\) emissions.

The results from the Criteria Pollutant Modeling are as follows:
Criteria Pollutant Modeling Results*
\begin{tabular}{|c|c|c|c|c|c|}
\hline Unit 69-0 & P Hour & 3 Hours & 8 Hours. & 24 Hours & Annual \\
\hline CO & Pass & X & Pass & X & X \\
\hline \(\mathrm{NO}_{\mathrm{X}}\) & Pass & X & X & X & Pass \\
\hline \(\mathrm{SO}_{x}\) & Pass & Pass & X & Pass & Pass \\
\hline \(\mathrm{PM}_{10}\) & X & X & X & Pass \(^{2}\) & Pass \(^{2}\) \\
\hline \(\mathrm{PM}_{2,5}\) & X & X & X & Pass \(^{2}\) & Pass \(^{2}\). \\
\hline
\end{tabular}
"Results were taken from the attached PSD spreadsheet.
'The prolect was compared to the 1 -hour NO2 National Amblent Alr Quality Standard that became effective on April 12, 2010 using the District's approved procedures.
\({ }^{2}\) The criteria pollutants are below EPA's level of significance as found in 40 CFR Part 51.165 (b)(2).

\section*{III. Conclusions}

\section*{Units 64-1 thru 68-1:}

The acute and chronic indices are below 1.0; and the maximum individual cancer risk associated with these units is \(8.9 \mathrm{E}-07\); which is less than the 1 in a million threshold. In accordance with the District's Risk Management Policy, these units are approved without Toxic Best Available Control Technology (T-BACT).

\section*{Units 69-0:}

The emissions from the proposed equipment will not cause or contribute significantly to a violation of the State and National AAQS.

The acute and chronic indices are below 1.0; and the maximum individual cancer risk associated with this unit is 2.41 E -07; which is less than the 1 in a millon threshold. In accordance with the District's Risk Management Policy, the unit is approved without Toxic Best Available Control Technology (T-BACT).

To ensure that human health risks will not exceed Disirict allowable levels; the permit conditions listed on Page 1 of this report must be included for the proposed unit.

These conclusions are based on the data provided by the applicant and the project engineer. Therefore, this analysis is valid only as long as the proposed data and parameters do not change.

\section*{IV. Attachments}
A. RMR request from the project engineer
B. Additional information from the applicant/project engineer
C. Prioritization score w/ toxic emissions summary
D. HARP Risk Report
E. Facility Summary
F. AAQA Summary
G. AAQA Parameter Summary

\section*{ATTACHMENT X Draft ATCs}

\title{
San Joaquin Valley Air Pollution Control District
}

\section*{AUTHORITY TO CONSTRUCT}

PERMIT NO: C-2872-64-1

\author{
LEGAL OWNER OR OPERATOR: MAILING ADDRESS: \\ CHEVRON USA, INC. \\ PO8OX 1392 \\ BAKERSFIELD, CA 93302 \\ LOCATION: \\ LIGHT OIL PRODUCTION \\ FRESNO COUNTY, CA
}

SECTION: 7 TOWNSHIP: 19S RANGE: 15E
EQUAPMENT DESCRIPTION:
UP TO 1000 BEL FIXED ROOF CRUDE OIL STORAGE TANK (T-110), INCLUDING LACT UNIT WITH LIQUID PUMPS OISCHARGING TO TRUCK LOADOUT LISTED ON PERMIT C-2872-68, AND VENTING TO TANK VAPOR CONTROL SYSTEM SHARED WITH TANKS C-2872-65, '-67, AND TRUCK LOADOUT C-2872-68, DISCHARGING COLLECTED VAPORS THROUGH LOW PRESSURE KNOCKOLT DRUM V-150 TO FLARE C-2872-69 OR DOGGR-APPROVED DISPOSAL WELLS (INSPECTOR TO VERIFY TANK CAPACITY AT STARTUP INSPECTION)

\section*{CONDITIONS}
1. ATC C-2872-64-0 and PTO C-2872-1-1 are hereby cancelled. [District Rule 2201]
2. ATC shall be implemented concurrently with or subsequent to ATC C-2872-69-0. [District Rule 2201]
3. The vapor control system shall be capable of reducing VOC emissions by at least \(99 \%\) by weight. [District Rule 2201]
4. Collected tank vapors shall be incinerated in flare C-2872-69 or reinjected into DOGGR-approved disposal wells. [District Rule 2201]
5. Except as otherwise provided on this permit, this tank shall be maintained in a leak-free condition. [District Rule 4623]
6. Except as otherwise provided in this permit, any tank gauging or sampling device on a tank vented to the vapor recovery system shall be equipped with a leak-free cover which shall be closed at all times except during gauging or sampling. [District Rule 4623]
7. Except as otherwise provided for on this permit, this tank shail only vent to the vapor control system. [District Rules 2201 and 4623]

\section*{CONDITIONS CONTINUE ON NEXT PAGE}

YOU MUST NOTIFY THE DISTRICT COMPLIANCE DIVISION AT (559) 230-5950 WHEN CONSTRUGTION IS COMPLETED AND PRIOR TO OPERATING THE EQUIPMENT OR MODIFICATIONS AUTHORIZED BY THIS AUTHORITY TO CONSTRUCT. This is NOT a PERMIT TO OPERATE. Approval or denial of a PERMIT TO OPERATE will be made after an inspection to verify thet the equipment has been constructed in accordance wilh the approved plans, specifications and conditions of thls Authority to Construct, and to determine if tha equipment can be operated in compliance with all Rules and Regulalipns of the San Joaquin Valley Unified Air Pollution Control Districh, Unlass construction has commenced pursuant to Rule 2050, thls Authority to Construct shall expire and applycalion shall be cancelled two years from the date of issuance. The applicant is responsible for complying with all laws, oreinances and regulationa of ailetiler governmental agencles which may pertain to the above equipmant.


Arnaud Marjolet-Erector of Pormit Services

8. Except as otherwise provided in this permit, the vapor control system shall be maintained in a leak-frec condition. [District Rule 4623]
9. VOC fugitive emissions from the components in gas and liquid service on the tank and LACT shall not exceed 7.6 [b/day. [District Rule 2201]
10. VOC fugitive emissions from the components in gas and liquid service part of the vapor control system shall not exceed \(23.2 \mathrm{lb} /\) day. [District Rule 2201]
11. Permittee shall maintain accurate component count for tank and TVR system according to EPA's "Protocol for Equipment Leak Emission Estimate," Table 24 (EPA-453/R-95-017), Oil and Gas Production Operations Average Emission Factors. Pemittee shall update such records when new components are approved and installed. [District Rule 2201]
12. All piping, fittings, and valves on this tank shail be inspected annually by the facility operator in accordance with EPA Method 2l, with the instrument calibrated with methane, to ensure compliance with the leaking provisions of this permit. [District Rules 2201 and 4623]
13. Any component found to be leaking by the operator on two consecutive anmual inspections is in violation of the District Rule 4623, even if it is under the voluntary inspection and maintenance program. [District Rules 2201 and 4623]
14. Operator shall vistally inspect tank shell, hatches, seals, scams, cable seals, valves, flanges, connectors, and any other piping components directly affixed to the tank and within five feet of the tank at least once per year for liquid leaks, and with a portable hydrocarbon detection instrument conducled in accordance with EPA Method 21 for gas leaks. Operator shall also visually or ultresonicatly inspect as appropriate, the external shells and roofs of uninsulated tanks for structural integrity annually. [District Rule 2201 and 4623]
15. Upon detection of a liquid leak, deftred as a leak rate of greater than or equal to 30 drops per minute, operator shall repair the leak within 8 hours. For leaks with a liquid leak rate of between 3 and 30 drops per minute, the leaking component shall be repaired within 24 hours after detection. [District Rules 2201 and 4623]
16. Upon detection of a gas leak, defined as a VOC concentration of greater than 10,000 ppmv measured in accordance with EPA Method 21 , operator shall take one of the following actions: 1) eliminate the leak within 8 hours after detection; or 2) if the keak cannot be eliminated, then minimize the leak to the lowest possible level within 8 hours after detection by using best maintenance practices, and ehminate the leak within 48 hours atter minimization. In no event shall the total time to minimize and climinate a leak exceed 56 hours after detection. [District Rules 2201 and 4623]
17. Components found to be leaking cither liquids or gases shall be immediately affixed with a tag showing the component to be leaking. Operator shall maintain records of the liquid or gas leak detection readings, date/time the leak was discovered, and date/time the component was repaired to a leak-free condition. [District Rules 2201 and 4623]
18. Leaking components that have been discovered by the operator that have been immediately tagged and repaired within the timeframes specified in District Rule 4623 , Table 3 shall not constitute a violation of this rule. Leaking components as detined by District Rule 4623 discovered by District staff that were not previously identified and/or tagged by the operator, and/or any leaks that were not repaired within the timeframes specified in District Rule 4623, Table 3 shall constitute a violation of this rule. [District Rules 2201 and 4623]
19. If a component type for a given tank is found to leak during an annual inspection, operator shall conduct quarterly inspections of that component type on the tank or tank system for four consecutive quarters. If no components are found to leak after four consecutive quarters, the operator may revert to anmual inspections. [District Rules 220 I and 4623]
20. The permittee shall keep accurate records of the dates of inspection and monitoring and the components inspected and monitored. [District Rules 2201 and 4623]
21. Operator shall maintain an inspection log containing the following 1) Type of component leaking; 2) Date and time of leak detection, and method of cetection; 3) Date and time of leak tepair, and emission level of recheck after leak is repaired; 4) Method used to minimize the leak to lowest posibje] wel within 8 hours after detection. [District Rules 2080]
22. Permitter shall notify the APCO in writing at least three (3) days prior to performing tank degassing and interior tank cleaning activities. Written notification shall include the following; 1) the Permit to Operate number and physical location of the tank being degassed, 2) the date and time that tank degassing and cleaning activities will begin, 3) the degassing method, as allowed in this permit, to be used, 4) the method to be used to clean the tank, including any solvents to be used, and 5) the method to be used to dispose of any removed sludge, including methods that will be used to control emissions from the receiving vessel and emissions during transport. [District Rule 4623]
23. This tank shall be degassed before commencing interior cleaning by one of the following methods (l) exhausting VOCs contained in the tank vapor space to an APCO-approved vapor recovery system until the organic vapor concentration is 5,000 ppinv or less, or is 10 percent or less of the lower explosion limit (LEL), whichever is less; or (2) displacing VOC contained in the tank vapor space to an APCO-approved vapor recovery system by filling the tank with a suitable liquid until 90 percent or more of the maximum operating level of the tank is filled. Suitable liquids are organic liquids having a TVP of less than 0.5 psia, water, clean produced water, or produced water derived from crude oil having a TVP less than 0.5 psia; or (3) displacing VOC contained in the tank vapor space to an APCO-approved vapor recovery system by filling the tank with a suitable gas. Degassing shall continue until the operator has achieved a vapor displacement equivalent to al least 2.3 times the tank capacity. Suitable gases are air, nitrogen, carbon dioxide, or natural gas containing less than 10 percent VOC by weight. [District Rule 4623]
24. During tank degassing, the operator shall discharge or displace organic vapors contained in the tank vapor space to an APCO-approved vapor recovery system. [District Rule 4623]
25. To facilitate connection to an external APCO approved recovery system, a suitable tank fitting, such as a man way, may be temporarily removed for a period of time not to exceed I hour. [District Rule 4623]
26. This tank shall be in compliance with the applicable requirements of District Rule 4623 at all times during draining, degassing, and refilling the tank with on organic liquid. [District Rule 4623]
27. After a tank has been degassed pursuant to the requirements of this permit, vapor control requirements are not applicable until an organic liquid is placed, held, or stored in this tank. [District Rule 4623]
28. While performing tank cleaning activities, operators may only use the following cleaning agents. water, diesel, solvents with an initial boiling point of greater than 302 degrees \(F\), solvents with a vapor pressure of less than 0.5 psia, or solvents with 50 grams of VOC per liter or less. [District Rule 4623]
29. Steam cleaning shall only be allowed at locations where wastewater treatment facilities are limited, or during the months of December through March. [District Rule 4623]
30. During sludge removal from a vessel containing an organic liquid with a TVP or 1.5 psia or greater, the operator shall] control emissions from the sludge receiving vessel by operating an APCO-approved vapor control device that reduces emissions of organic vapors by at least \(95 \%\). [District Rule 4623]
31. Permitee shall only transport removed sludge from a tank containing an organic liquid with a TVP of 1.5 psia or greater, in closed liquid leak-free containers. [District Rule 4623]
32. Permitee shall store removed sludge, until final disposal, in vapor leak-free containers, or in tanks complying with the vapor control requirements of District Rule 4623. Sludge that is to be used to manufacture roadmix, as defined in District Rule 2020, is not required to be stored in this manner. Roadmix manufacturing operations exempt pursuant to District Rule 2020 shall maintain documentation of their compliance with Rule 2020 , and shall readily make said documentation available for District inspection upon request. [District Rules 2020 and 4623]
33. All records of required monitoring data and support information shall be maintained and retained onsite for a period of at least \(S\) years and shall be made available for District inspection upon request. [District Rules 2201 and 4623]


\section*{AUTHORITY TO CONSTRUCT}

PERMIT NO: C-2872-65-1

\author{
LEGAL OWNER OR OPERATOR: MAILING ADDRESS: \\ CHEVRON USA, INC. \\ POBOX 1392 \\ BAKERSFIELD, CA 93302 \\ LIGHT OIL PRODUCTION \\ FRESNO COUNTY, CA
}

\section*{SECTION: 7 TOWNSHP: 19S RANGE: 15E}

EQUIPMENT DESCRIPTION:
1000 8BL FIXED ROOF CRUDE OIL DRAIN TANK (T-130) CONNECTED TO TANK VAPOR CONTROL SYSTEM LISTED ON PERMIT C-2872-64 (INSPECTOR TO VERIFY TANK CAPACITY AT STARTUP INSPECTION)

\section*{CONDITIONS}
1. ATC shall be implemented concurrently with or subsequent to ATC C-2872-64-1. [District Rule 2201]
2. ATC C-2872-65-0 and PTO C-2872-4-1 are hereby cancelled. [District Rule 2201]
3. Except as otherwise provided on this permit, this tank shall be maintained in a leak-free condition. [District Rule 4623]
4. Except as otherwise provided in this permit, any tank gauging or sampling device on a fank vented to the vapor recovery system shall be equipped with a leak-free cover which shall be closed at all times except during gauging or sampling. [District Rule 4623]
5. Except as otherwise provided for on this permit, this tank shall only vent to the vapor control system. [District Rules 2201 and 4623]
6. Except as otherwise provided in this permit, the vapor control system shall be maintained in a leak-free condition. [District Rule 4623]
7. VOC fugitive emissions from the components in gas and liquid service on the tank shall not exceed \(4.9 \mathrm{lb} /\) day. [District Rule 2201]
8. Permittee shall maintain accurate component count for tank according to EPA's "Protocol for Equipment Leak Emission Estimate," Table \(2-4\) (EPA-453/R-95-017), Oil and Gas Production Operations Average Entission Factors. Permittee shall update such records when new components are approved and installed. [District Rule 2201] CONDITIONS CONTINUE ON NEXT PAGE

YOU MUST NOTIFY THE DISTRICT COMPLIANCE OIVISION AT (559) \(230-5960\) WHEN CONSTRUCTION IS CONPLETED AND PRIOR TO OPERATINO THE EQUIPMENT OR MODIFICATIONS AUTHORIZED GY THIS AUTHORITY TO CONSTRUCT, ThIS IS NOT a PERMIT TO OPERATE, Approval or denial of a PERMIT TO OPERATE will be made after an inspection lo verify that the equipment has been constructed in accordanco whth the approved plans, specticatlons and conditions of this Authority to Consiruct, and to determins if lhe equlpment can be operatad in compliance with all Rulss and Regulallons of the San Joaquin Valey Unified Air Pollution Control District. Unless construction has commenced pursuant to Rule 2050, this Authority to Construct shall expire and application shall be cancelled two years fram the date of issuance. The appllcant is responalble for complying with all laws, ordnances and tegulatlons of ali-ether governmental agencles which may pentin to the above equipment.


Amaud Mariollet-Pirector of Permit Services
C.
9. All piping, fittings, and valves on this tank shall be inspected annually by the facility operator in accordance with EPA Method 21, with the instrument calibrated with methane, to ensure compliance with the leaking provisions of this permit. [District Rules 2201 and 4623]
10. Any component found to be leaking by the operator on two consecutive annual inspections is in violation of the District Rule 4623, even if it is under the voluntary inspection and maintenance program. [District Rules 2201 and 4623]
11. Operator shall visually inspect tank shell, hatches, seals, seams, cable seals, valves, flanges, connectors, and any other piping components directly affixed to the tank and within five feet of the tank at least once per year for liquid leaks, and with a portable hydrocarbon detection instrument conducted in accordance with EPA Method 21 for gas leaks. Operator shall also visually or ultrasonically inspect as appropriate, the external shells and roofs of uninsulated tanks for structural integrity annually. [District Rule 2201 and 4623]
12. Upon detection of a liquid leak, defined as a leak rate of greater than or equal to 30 drops per minute, operator shall repair the leak within 8 hours. For leaks with a liquid leak rate of between 3 and 30 drops per minute, the leaking component shall be repaired within 24 hours after detection. [District Rules 2201 and 4623]
13. Upon detection of a gas leak, defined as a VOC concentration of greater than 10,000 ppmv measured in accordance with EPA Method 21, operator shall take one of the following actions: 1) eliminate the leak within 8 hours after detection; or 2) if the leak cannot be eliminated, then minimize the leak to the lowest possible level within 8 hours after detection by using best maintenance practices, and eliminate the leak within 48 hours after minimization. In no event shall the tolal time to minimize and eliminate a leak exceed 56 hours after detection. [District Rules 2201 and 4623]
14. Components found to be leaking either liquids or gases shall be immediately affixed with a tag showing the component to be leaking. Operator shall maintain records of the liquid or gas leak detection readings, date/time the leak was discovered, and date/time the component was repaired to a leak-free condition. [District Rules 2201 and 4623]
15. Leaking components that have been discovered by the operator that have been immedjately tagged and repaired within the limeframes specified in District Rule 4623, Table 3 shall not constitute a violation of this rule. Leaking components as defined by District Rule 4623 discovered by District staff that were not previously identified and/or tagged by the operator, and/or any leaks that were not repaired within the timeframes specified in District Ruie 4623, Table 3 shall constitute a violation of this rule. [District Rules 2201 and 4623]
16. If a component type for a given tank is found to leak during an annual inspection, operator shall conduct quarterly inspections of that component type on the tank or tank system for four conseculive quarters. If no components are found to leak after four consecutive quarters, the operator may revert to annual inspections. [District Rules 2201 and 4623]
17. The permittee shall keep accurate records of the dates of inspection and monitoring and the components inspected and monitored. [District Rule 2201 and 4623]
18. Operator shall maintain an inspection log containing the following 1) Type of component leaking; 2) Date and time of leak detection, and method of detection; 3) Date and time of leak repair, and emission level of recheck after leak is repaired; 4) Method used to minimize the leak to lowest possible level within 8 hours after detection. [District Rules 2080]
19. Permittee shall notify the APCO in writing at least three (3) days prior to performing tank degassing and interior tank cleaning activities. Written notification shall include the following: 1) the Permit to Operate number and physica! location of the tank being degassed, 2) the date and time that tank degassing and cleaning activities witi begin, 3) the degassing method, as allowed in this permit, to be used, 4) the method to be used to clean the tank, including any solvents to be used, and 5) the method to be used to dispose of any removed sludge, including methods that will be used to control emissions from the receiving vessel and emissions during transport. [District Rule 4623]
20. This tank shall be degassed before commencing interior cleaning by one of the following methods (1) exhausting VOC contained in the tank vapor space to an APCO-approved vapor recovery system until the organic vapor concentration is 5,000 ppm or less, or is 10 percent or less of the lower explosion limit (LEL), whichever is less; or (2) displacing VOC contained in the tank vapor space to an \(A P C O\)-approved vapor recovery system by filling the tank with a suitable liquid until 90 percent or more of the maximum operating level of the tank is filled. Suitable liquids are organic liquids having a TVP of less than 0.5 psia, water, clean produced water, or produced water derived from crude oil having a TVP less than 0.5 psia; or (3) displacing VOWs contained in the tank vapor space to an APCO-approved vapor recovery system by filling the tank with a suitable gas. Degassing shall continue until the operator has achieved a vapor displacement equivalent to at least 2.3 times the tank capacity. Suitable gases are air, nitrogen, carbon dioxide, or natural gas containing less than 10 percent VOC by weight. [District Rule 4623]
21. During tank degassing, the operator shall discharge or displace organic vapors contained in the tank vapor space to an APCO-approved vapor recovery system. [District Rule 4623]
22. To facilitate connection to an external APCO -approved recovery system, a suitable tank fitting, such as a manway, may be temporarily removed for a period of time not to exceed 1 hour. [District Rule 4623]
23. This tank shall be in compliance with the applicable requirements of District Rule 4623 at all times during draining, degassing, and refilling the tank with an organic liquid. [District Rule 4623]
24. After a tank has been degassed pursuant to the requirements of this permit, vapor control requirements are not applicable until an organic liquid is placed, held, or stored in this tank. [District Rule 4623]
25. While performing tank cleaning activities, operators may only use the following cleaning agents: water, diesel, solvents with an initial boiling point of greater than 302 degrees \(F\), solvents with a vapor pressure of less than 0.5 psia, or solvents with 50 grams of VOC per liter or less. [District Rule 4623]
26. Steam cleaning shall only be allowed at locations where wastewater treatment facilities are limited, or during the months of December through March. [District Rule 4623]
27. During sludge removal from a vessel containing an organic liquid with a TVP or 1.5 psia or greater, the operator shall control emissions from the sludge receiving vessel by operating an A PCO -approved vapor control device that reduces emissions of organic vapors by at least 95\%. [District Rule 4623]
28. Permitee shall only transport removed sludge from a tank containing an organic liquid with a TVP of 1.5 psis or greater, in closed liquid leak-free containers. [District Rule 4623]
29. Permitee shall store removed sludge, until final disposal, in vapor leak-free containers, or in tanks complying with the vapor control requirements of District Rule 4623. Sludge that is to be used to manufacture roadmix, as defined in District Rule 2020, is not required to be stored in this manner. Roadmix manufacturing operations exempt pursuant to District Rule 2020 shall maintain documentation of their compliance with Rule 2020 , and shall readily make said documentation available for District inspection upon request. [District Rules 2020 and 4623]
30. All records of required monitoring data and support information shall be maintained and retained onsite for a period of at least 5 years and shall be made available for District inspection upon request. [District Rules 2201 and 4623]


\section*{AUTHORITY TO CONSTRUCT}

PERMIT NO: C-2872-66-1

\section*{LEGAL OWNER OR OPERATOR:} MAILING ADDRESS:

LOCATION:

SECTION: 7 TOWNSHIP: 19 S
EQUIPMENT DESCRIPTION:
UP TO 300 BBL HORIZONTAL THREE PHASE SEPARATOR VESSEL (V-100), INCLUDING HIGH PRESSURE KNOCK OUT VESSEL V-140, VENTED TO FLARE C-2872-69 OR DOGGR-APPROVED DISPOSAL WELL (S) (INSPECTOR TO VERIFY TANK CAPACITY AT STARTUP INSPECTION)

\section*{CONDITIONS}
1. ATC shall be implemented concurrently with or subsequent to ATC C-2872-64-1. [District Rule 2201]
2. ATC C-2872-66-0 and PTO C-2872-3-1 are hereby cancelled, [District Rule 2201]
3. Except as otherwise provided on this permit, this separator shall be maintained in a leak-free condition. [District Rule 4623]
4. Except as otherwise provided in this permit, any separator gauging or sampling device on a separator vented to the vapor recovery system shall be equipped with a leak-free cover which shall be closed at all times except during gauging or sampling. [District Rule 4623]
5. Except as otherwise provided for on this permit, this separator shall only vent to flare C-2872-69 or DOGGR-approved disposal wells). [District Rules 2201 and 4623]
6. VOC fugitive emissions from the components in gas and liquid service on the phase separator shall not exceed 12.0 b/day. [District Rule 2201]
7. Permitee shall maintain accurate component count for separator according to EPA's "Protocol for Equipment Leak Emission Estimate," Table 2-4 (EPA-453/R-95-017), Oil and Gas Production Operations Average Emission Factors. Permitter shall update such records when new components are approved and installed. [District Rule 2201]

\section*{CONDITIONS CONTINUE ON NEXT PAGE}

YOU MUSI NOTIFY THE DISTRICT COMPLIANCE DIVISION AT (559) \(230-5950\) WHEN CONSTRUCTION IS COMPLETED AND PRIOR TO OPERATING THE EOUIPMENT OR MODIFICATIONS AUTHORIZED BY THIS AUTHORITY TO CONSTRUCT. ThIS IS NOT G PERMIT TO OPERATE. Approval or denial of a PERMIT TO OPERATE will be made after an Inspection to verify that the equipment has been constructed in accordance with the approved plans, specifications and conditions of this Authority to Construct, and to determine if the equipment can be operated in compliance with all Rises and Regulations of the San Joaquin Valley Unified Air Pollution Control District. Unless construction has commenced pursuant to Rule 2050, this Authority to Construct shall expire and application shall be cancelled two years from the date of issuance. The applicant is responsible for complying with all laws, ordinances and regulations of all ether governmental agencies which may pertain to the above equipment
Seyed Sadredin, Execulvapifectry APCO


Arnaud Mariolleh-Girector of Permit Services

8. All piping, fittings, and valves on this separator shall be inspected annually by the facility operator in accordance with EPA Method 21, with the instrument calibrated with methane, to ensure compliance with the leaking provisions of this permit. [District Rules 2201 and 4623]
9. Any component found to be leaking by the operator on two consecutive annual inspections is in violation of the District Rule 4623, even if it is under the voluntary inspection and maintenance program. [District Rules 2201 and 4623]
10. Operator shall visually inspect separator shell, hatches, seals, seams, cable seals, valves, flanges, connectors, and any other piping components directly affixed to the separator and within five feet of the separator at least once per year for liçuid leaks, and with a portable hydrocarbon detection instrument conducted in accordance with EPA Method 21 for gas leaks. Operator shail also visually or ultrasonically inspect as appropriate, the external shellis and roofs of uninsulated separators for structural integrity annually. [District Rules 2201 and 4623]
11. Upon detection of a liquid leak, defined as a leak rate of greater than or equal to 30 drops per minute, operator shall repair the leak within 8 hours. For leaks with a liquid leak rate of between 3 and 30 drops per minute, the leaking component shall be repaired within 24 hours after detection. [District Rules 2201 and 4623]
12. Upon detection of a gas leak, defined as a VOC concentration of greater than 10,000 ppmv measured in accordance with EPA Method 21, operator shall take one of the following actions: 1) eliminate the leak within 8 hours after detection; or 2 ) if the leak cannot be eliminated, then minimize the leak to the lowest possible level within 8 hours after detection by using best maintenatice practices, and eliminate the leak within 48 hours after minimization. In no event shall the total time to minimize and eliminate a leak exceed 56 hours after detection. [District Rules 2201 and 4623]
13. Components found to be leaking either liquids or gases shall be immediately affixed with a tag showing the component to be leaking. Operator shall maintain records of the liquid or gas leak detection readings, date/time the leak was discovered, and date/time the component was repaired to a leak-Free condition. [District Rules 2201 and 4623]
14. Leaking components that have been discovered by the operator that have been immediately tagged and repaired within the timeframes specified in District Rule 4623, Table 3 shall not constitute a violation of this rule. Leaking components as defined by District Rule 4623 discovered by District staff that were not previously identified and/or tagged by the operator, and/or any leaks that were not repaired within the timeframes specified in District Rule 4623, Table 3 shall constitute a violation of this rulc. [District Rules 2201 and 4623]
15. If a component type for a given separator is found to leak during an amnual inspection, operator shall conduct quarterly inspections of that component type on the separator or separator system for four consecutive quarters. If no components are found to leak after four consecutive quarters, the operator may revert to annual inspections. [District Rules 2201 and 4623]
16. The permittee shall keep accurate records of the dates of inspection and monitoring and the components inspected and monitored. [District Rule 2201 and 4623]
17. Operator shall maintain an inspection log containing the following 1) Type of component leaking; 2) Date and time of leak detection, and method of detection; 3) Date and time of leak repair, and emission level of recheck after leak is repaired; 4) Method used to minimize the leak to lowest possible level within 8 hours after detection. [District Rulcs 2080]
18. Permittee shall notify the APCO in writing at least three (3) days prior to performing separator degassing and interior separator cleaning activitics. Written notification shall include the following: 1) the Permit to Operate number and physical location of the separator being degassed, 2) the date and time that separator degassing and cleaning activities will begio, 3) the degassing method, as allowed in this permit, to be used, 4) the method to be used to clean the separator, including any solvents to be used, and 5) the method to be used to dispose of any removed sludge, including methods that will be used to control emissions from the receiving vessel and emissions during transport. [District Rule 4623]

19. This separator shail be degassed before commencing interior cleaning by one of the following methods (1) exhausting VOCs contained in the separator vapor space to an APCO-approved vapor recovery system until the organic vapor concentration is 5,000 ppmv or less, or is 10 percent or less of the lower explosion limit (LEL), whichever is less; or (2) displacing VOCs contained in the separator vapor space to an APCO-approved vapor recovery system by filling the separator with a suitable liquid until 90 percent or more of the maximum operating level of the separator is filled. Suitable liquids are organic liquids having a TVP of less than 0.5 psia, water, clean produced water, or produced water derived from crude oil having a TVP less than 0.5 psia; or (3) displacing VOCs contained in the separator vapor space to an APCO-approved vapor recovery system by filling the separator with a suitable gas. Degassing shall continue until the operator has achieved a vapor displacement equivalent to at least 2.3 times the separator capacity. Suitable gases are air, nitrogen, carbon dioxide, or natural gas containing less than 10 percent VOC by weight. [District Rule 4623]
20. During separator degassing, the operator shall discharge or displace organic vapors contained in the separator vapor space to an APCO-approved vapor recovery system. [District Rule 4623]
21. To facilitate connection to an extemal APCO-approved recovery system, a suitable separator fitting, such as a manway, may be temporarily removed for a period of time not to exceed \(i\) hour. [District Rule 4623]
22. This separator shall be in conpliance with the applicable requirements of District Rule 4623 at all times during draining, degassing, and refilling the separator with an organic liquid. [District Rule 4623]
23. After a separator has been degassed pursuant to the requirements of this permit, vapor control requirements are not applicable until an organic liquid is placed, held, or stored in this separator. [District Rule 4623]
24. While performing separator cleaning activities, operators may only use the following cleaning agents: water, diesel, solvents with an initial boiling point of greater than 302 degrees \(F\), soivents with a vapor pressure of less than 0.5 psia, or solvents with 50 grams of VOC per liter or less. [District Rule 4623]
25. Steam cleaning shall only be allowed at locations where wastewater treatment facilities are limited, or during the months of December through March. [District Rule 4623]
26. During sludge removal from a vessel containing an organic liquid with a TVP or 1.5 psia or greater, the operator sball control emissions from the sludge receiving vessel by operating an APCO-approved vapor control device that reduces emissions of organic vapors by at least \(95 \%\). [District Rule 4623]
27. Permittee shall only transport removed sludge from a separator containing an organic liquid with a TVP of 1.5 psia or greater, in closed liquid leak-free containers. [District Rule 4623]
28. Permittee shall store removed sludge, until final disposal, in wapor leak-free containers, or in separators complying with the vapor control requirements of District Rule 4623 . Sludge that is to be used to manufacture roadmix, as defined in District Rule 2020, is not required to be stored in this manner. Roadmix manufacturing operations exempt pursuant to District Rule 2020 shall maintain documentation of their compliance with Rule 2020, and shall readily make said documentation available for District inspection upon request. [District Rules 2020 and 4623]
29. All records of required monitoring data and support information shall be maintained and retained on-site for a period of at least 5 years and shall be made available for District inspection upon request. [District Rules 2201. and 4623]


\section*{AUTHORITY TO CONSTRUCT}

PERMIT NO: C-2872-67-1
LEGAL OWNER OR OPERATOR: MAILING ADDRESS:

LOCATION:

SECTION: 7 TOWNSHIP: 19 S

\section*{EQUIPMENT DESCRIPTION:}

UP TO 1000 BBL FIXED ROOF CRUDE OIL WASTE WATER TANK (T-120) CONNECTED TO TANK VAPOR CONTROL SYSTEM LISTED ON PERMIT C-2872-64 (INSPECTOR TO VERIFY TANK CAPACITY AT STARTUP INSPECTION)

\section*{CONDITIONS}
1. ATC shall be implemented concurrently with or subsequent to ATC C-2872-64-1. [District Rule 2201]
2. ATC C-2872-67-0 and PTO C-2872-7-1 are hereby cancelled. [District Rule 2201]
3. Except as otherwise provided on this permit, this tank shall be maintained in a leak-free condition. [District Rule 4623]
4. Except as otherwise provided in this permit, any tank gauging or sampling device on a lark vented to the vapor recovery system shall be equipped with a leak-free cover which shall be closed at all times except during gauging or sampling. [District Rule 4623]
5. Except as otherwise provided for on this permit, this tank shall only vent to the vapor control system listed on C-287264. [District Rules 2201 and 4623]
6. VOC fugitive emissions from the components in gas and liquid service on the tank shall not exceed \(7.3 \mathrm{Jb} /\) day. [District Rule 220:]
7. Permitter shall maintain accurate component count for tank according to EPA's "Protocol for Equipment Leak Emission Estimate," Table 2-4 (EPA-453/R-95-017), Oil and Gas Production Operations Average Emission Factors. Permitee shall update such records when new components are approved and installed. [District Rule 2201]

\section*{CONDITIONS CONTINUE ON NEXT PAGE}

YOU MUST NOTFFY THE DISTRICT COMPLIANCE DIVISION AT (559) \(230-5960\) WHEN CONSTRUCTION IS COMPLETED AND PRIOR TO OPERATING THE EQUIPMENT OR MODIFICATIONS AUTHORIZED BY THIS AUTHORITY TO CONSTRUCT. THIS IS NOT G PERMIT TO OPERATE. Approval or denIes of a PERMIT TO OPERATE will be made after an inspecilon to verify that the equipment has been constructed in accorderice with the approved plans, specifications and conditions of this Authority to Construct, and to determine if the equipment can be operated in compliance with all Rules and Regulations of the San Joaquin Valley United Air Pollution Control District. Unless construction has commenced pursuant to Rule 2050, this Authority to Construct shall expire and application shall be cancelled two years from the date of issuance. The applicant is responsible for complying with all laws, ordinances and regulations of ailather governmental agencies which may pertain to the above equipment.
Seyed Sadredin, Exacodivép precatory APCO


Arnaud Marjolleh-Eirector of Permit Services

8. All piping, fittings, and valves on this tank shall be inspected annually by the facility operator in accordance with EPA Method 21, with the instrument calibrated with methane, to ensure compliance with the leaking provisions of this permit. [District Rufes 2201 and 4623]
9. Any component found to be leaking by the operator on two consecutive annual inspections is in violation of the District Rule 4623, even if it is under the voluntary inspection and maintenance program. [District Rules 2201 and 4623]
10. Operator shall visually inspect tank shell, hatches, seals, seams, cable seats, valves, flanges, connectors, and any other piping components directly affixed to the tank and within five feet of the tank at least once per year for liquid leaks, and with a portable hydrocarbon detection instrument conducted in accordance with EPA Method 21 For ges leaks. Operator shall also visually or ultrasonically inspect as appropriate, the external shells and rool's of uninsulated tarks for structural integrity anrmally. [District Rules 2201 and 4623]

I I. Upon detection of a liquid leak, defined as a leak rate of greater than or equal to 30 drops per minute, operator shall repair the leak within 8 hours. For leaks with a liquid leak rate of between 3 and 30 drops per minute, the leaking component shall be repaired within 24 hours after detection. [District Rules 2201 and 4623]
12. Upon detection of a gas leak, defined as a VOC concentration of greater than 10,000 ppmv measured in accordance with EPA Method 21, operator shall take one of the following actions: 1) eliminate the leak within 8 hours after detection; or 2) if the leak cannot be eliminated, then mininize the leak to the lowest possible level within 8 hours after detection by using best maintenance practices, and eliminate the leak within 48 hours after minimization. In no event shall the total. time to minimize and eliminate a leak exceed 56 hours after detection. [District Rules 2201 and 4623]
13. Components found to be leaking either liquids or gases shall be immediately affixed with a tag showing the component to be leaking. Operator shall maintain records of the liquid or gas leak detection readings, date/time the leak was discovered, and date/time the component was repaited to a leak-free condition. [District Rules 2201 and 4623]
14. Leaking components that have been discovered by the operator that have been immediately targed and repaired within the timeframes specified in District Rule 4623, Table 3 shall not constitute a violation of this rule. Leaking components as defined by District Rule 4623 discovered by District staff that were not previously identified and/or tagged by the operator, and/or any leaks that were not repaired within the timeframes specified in District Rule 4623, Table 3 shall constitute a violation of this rule. [District Rules 2201 and 4623]
15. If a component type for a given tank is found to leak during an annual inspection, operator shall conduct quarterly inspections of that component type on the tank or tank system for four consccutive quarters. If no components are found to leak gfter four consecutive quarters, the operator may revert to annual inspections. [District Rules 220\(]\) and \(4623]\)
16. The permittee shall keep accurate records of the dates of inspection and monitoring and the components inspected and monitored. [District Rule 2201 and 4623]
17. Operakor shall matitain an inspection log containing the following 1) Type of component leaking; 2) Date and time of leak detection, and method of detection; 3) Date and time of ieak repair, and emission level of recheck after leak is repaired; 4) Method used to minimize the leak to lowest possible level within 8 hours after detection. District Rule 2080]
18. Permittee shall notify the APCO in writing at least three (3) days prior to performing tank degassing and interior tank cleaning activities. Written notification shall include the following: t) the Permit to Operate number and physical location of the tank being degassed, 2) the date and time that tank degassing and cleaning activities will begin, 3) the degassing method, as allowed in this permit, to be used, 4) the method to be used to clean the tank, including any solvents to be used, and 5) the method to be used to dispose of any removed sludge, including methods that will be used to control emissions from the receiving vessel and emissions during transport. [District Rule 4623]
19. This tank shall be degassed before commencing interior cleaning by one of the following methods (1) exhausting VOCs contained in the tank vapor space to an APCO-approved vapor recovery system until the organic vapor concentration is \(5,000 \mathrm{ppmv}\) or less, or is 10 percent or less of the lower explosion limit (LEL), whichever is less; or (2) displacing VOCs contained in the tank vapor space to an APCO-approved vapor recovery system by filling the tank with a suitable liquid until 90 percent or more of the maximum operating level of the tank is filled. Suitable liquids are organic liquids having a TVP of less than 0.5 psia, water, clean produced water, or produced water derived from crude oil having a TVP less thun 0.5 psia; or (3) displacing VOCs contained in the tank vapor space to an APCO-approved vapor recovery system by filling the tank with a suitable gas. Degassing shall continue until the operator has achieved a vapor displacement equivalent to at least 2.3 thmes the tank capacity. Suitable gases are air, nitrogen, carbon dioxide, or natural gas containing less than: 10 percent VOC by weight. [District Rule 4623]
20. During tank degassing, the operator shall discharge or displace organic vapors contained in the tank vapor space to an APCO-approved vapor recovery system. [District Rule 4623]
21. To facilitate connection to an external APCO-approved recovery system, a suitable tank fitting, such as a manway, may be temporarily removed for a period of time not to exceed 1 hour. [District Rule 4623]
22. This tank shall be in compliance with the applicable requirements of District Rule 4623 at all times during draining, degassing, and refilling the tank with an organic liquid. (District Rule 4623]
23. After a tank has been degassed pursuant to the requirements of this permit, vapor conirol requirements are not applicable until an organic liquid is placed, held, or stored in this tank. [District Rule 4623]
24. While performing tank cleaning activities, operators may only use the following cieaning agents: water, diesel, solvents with an initial boiling point of greater than 302 degrees \(F\), solvents with a vapor pressure of less than 0.5 psia, or solvents with 50 grams of VOC per liter or less. [District Rule 4623]
25. Steam cleaning shali only be allowed at locations where wastewater treatment facilities are limited, or during the months of December through March. [District Rule 4623]
26. During sludge removal from a vessel containing an organic liquid with a TVP or 1.5 psia or greater, the operator shall control emissions from the sludge receiving vessel by operating an APCO -approved vapor control device that reduces emissions of organic vapors by at least \(95 \%\). [District Rule 4623]
27. Permittee shall only transport removed studge from a tank containing an organic liquid with a TVP of 1.5 psia or greater, in closed liquid leak-free containers. [District Rule 4623]
28. Permittee shall store removed sludge, until fnal disposal, in vapor leak-free containers, or in tanks complying with the vapor control requirements of District Rule 4623 . Sludge that is to be used to manufacture roadmix as defined in District Rule 2020, is not required to be stored in this manner. Roadmix manufacturing operations exempt pursuant to District Rule 2020 shall maintain documentation of their compliance with Rule 2020, and shall readily make said documentation available for District inspection upon request. [District Rules 2020 and 4623]
29. All records of required monitoring data and support information shall be maintained and retained on-site for a period of at ieast 5 years and shall be made available for District inspection upon request. [District Rules 2201 and 4623]


\title{
San Joaquin Valley \\ Air Pollution Control District
}

\section*{AUTHORITY TO CONSTRUCT}

PERMIT NO: C-2872-68-1

\section*{LEGAL OWNER OR OPERATOR:} MAILING ADDRESS:

CHEVRON USA, INC. POBOX 1392 BAKERSFIELD, CA 93302

LIGHT OIL PRODUCTION
FRESNO COUNTY, CA

SECTION: 7 TOWNSHIP: 19S
RANGE: 15E
EQUIPMENT DESCRIPTION:
CLASS 2 ORGANIC LIQUID TRUCK LOADING OPERATION WITH VAPOR RETURN PIPING CONNECTED TO TANK VAPOR CONTROL SYSTEM LISTED ON PERMIT C-2872-64

\section*{CONDITIONS}
1. Prior to operating equipment under this Authority to Construct, permittee shall surrender VOC emission reduction credits for the following quantity of emissions: Ist quarter -152 lb , 2nd quarter - \(152 \mathrm{lb}, 3\) rod quarter -152 lb , and fourth quarter -152 lb . These amounts include the applicable offset ratio specified in Rule 2201 Section 4.8 (as amended \(4 / 21 / 11\) ) for the ERC specified below. [District Rule 2201]
2. ERC Certificate Number S-3737-1 (or a certificate split from this certificate) shall be used to supply the required offsets, unless a revised offseting proposal is received and approved by the District, upon which this Authority to Construct shall be reissued; administratively specifying the new offsetting proposal. Original public noticing requirements, if any, shall be duplicated prior to reissuance of this Authority to Construct. [District Rule 2201]
3. ATC shall be implemented concurrently with or subsequent to ATC C-2872-64-1. [District Rule 2201]
4. A.TC C-2872-68-0 is hereby canceiled. [District Rule 2201]
5. The unit shall always operate at least 805 ft away from the nearost receptor. [District Rule 4102]
6. During truck loading, displaced vapors shal! be vented to the TVR system listed on tank permit C-2872-64. [District Rule 4624]
7. Vapor collection and control system shall operate such that the pressure in the delivery tank being loaded does not exceed 18 inches water column pressure and six inches water column vacuum. [District Rule 4624]

CONDITIONS CONTINUE ON NEXT PAGE
YOU MUST NOTIFY THE DISTRICT COMPLIANCE DVISION AT (559) \(230-5950\) WHEN CONSTRUCTION IS COHPLETED AND PRIOR TO OPERATINO THE EQUIPMENT OR MODFICATIONS AUTHORJZED BY THIS AUTHORITY TO CONSTRUCT. ThIS IS NOT a PERMIT TO OPERATE. Approval or denlal of a PERMIT TO OPERATE will be made after an inspecton to verify that the equipment has beon conatructed in accordance with the approved plans, specifcations and conditions of thls Aulhority to Construct, and to delermine if the equipment can be operated in compliance wilh all Rules and Regulations of the San Joaquin Valley Unifled Alr Pollution Control Olstrict. Unless construction has commenceo pursuant to Rule 2050 , thls Authorlly to Construct shall expire and application shall be canceiled wo years from the date of issuance. The applicant is responsible for complying with all lows, ordinances and regulations of atherger govermental agencles which may periain to the above equlpment.


Arnaud Marjollet, تirector of Permit Sevices

8. Transfer rack shall be maintained and operated in accordance with the manufacturer's specifications, and operated such that there are no leaks or excess organic liquid drainage at disconnections as defined herein. [District Rule 4624]
9. All liquids and gases from the transfer operation shall be routed to one of the following systems: a vapor collection and control system; a fixed roof container that meets the control requirements specified in Rule 4623 (Storage of Organic Liquids); a floating roof container that meets the control requirements specified in Rule 4623 (Storage of Organic Liquids); or a pressure vessel equipped with an APCO-approved vapor recovery system that meets the control requirements specified in Rule 4623 (Storage of Organic Liquids); or a closed VOC emission control system. [District Rules 4623 and 4624]
10. Total product loaded into trucks via truck loading rack shall not exceed 19,999 gallons per day. [District Rules 2201 and 4624]
11. Controlled VOC emissions from truck loading operation shall not exceed 0.0516 lb -VOC/ 1000 gallons loaded. [District Rules 2201 and 4624]
12. Total number of disconnects shall not exceed 5 per day. [District Rule 2201]
13. During hose disconnects the maximum liquid spillage for liquids shall not exceed 10 miltiliters/disconnect based on an average from 3 consecutive disconnects. [District Rule 2201 and 4624]
14. Components subject to Rule 4409 and 4623 (vapor components tied to TVR system listed on C-2872-64) are exempt from the leak inspection requirements of Rule 4624. [District Rule 4624]
15. The operator shall maintain records of truck load out daily liquid throughput and number of disconnects. Records shall be retained for a minimum of five years and made readily available during normal business hours and submitted upon request to the APCO, CARB, or EPA. [District Rule 4624]


\author{
San Joaquin Valley Air Pollution Control District
}

\section*{AUTHORITY TO CONSTRUCT}

PERMIT NO: C-2872-69-0

\author{
LEGAL OWNER OR OPERATOR: CHEVRON USA, INC. MAILING ADDRESS: POBOX 1392 BAKERSFIELD, CA 93302 \\ LOCATION: \\ LIGHT OLL PRODUCTION \\ FRESNO COUNTY, CA
}

EQUIPMENT DESCRIPTION:
15.2 MMBTU/HR AIR ASSISTED JOHN ZINC FLARE, ZEECO, OR EQUIVALENT, RECEIVING VAPORS FROM C-2872-

54 AND/OR '-66

\section*{CONDITIONS}
1. Prior to operating equipment under this Authority to Construct, permittee shall surrender VOC emission reduction credits for the following quantity of emissions: !st quarter \(-2,203 \mathrm{lb}, 2 \mathrm{nd}\) quarter \(-2,203 \mathrm{lb}\), 3rd quarter \(-2,203 \mathrm{lb}\), and fourth quarter \(-2,203 \mathrm{lb}\). These amounts include the applicable offset ratio specified in Rule 2201 Section 4,8 (as amended 4/21/11) for the ERC specified below. [District Rule 2201]
2. ERC Certificate Number \(\mathrm{S}-3737\)-I (or a certificate split from this certificate) shall be used to supply the required offsets, unless a revised offsetting proposal is received and approved by the District, upon which this Authority to Construct shall be reissued, administratively specifying the new offselting proposal. Original public noticing requirements, if any, shall be duplicated prior to reissuance of this Authority to Construct. [District Rule 2201]
3. PTO C-2872-2-1 is hereby cancelled. [District Rule 2201]
4. The permittee shall obtain written District approval for the use of any equivalent equipment not specifically approved by this Authority to Construct. Approval of the equivalent equipment shall be made only after the District's determination that the submitted design and performance of the proposed alternate equipment is equivalent to the specifically authorized equipment. [District Rule 2201]
5. The permittee's request for approval of equivalent equipment shall include the make, model, manufacturer's maximum rating, manufacturer's guaranteed emission rates, equipment drawing(s), and operational characteristics/parameters.
[District Rule 2201]

\section*{CONDITIONS CONTINUE ON NEXT PAGE}

YOU MUST NOTIFY THE DISTRICT COMPLIANCE OIVISION AT (558) 230-5950 WHEN CONSTRUCTION IS COWPLETED AND PRIOR TO OPERATING THE EQUIPAENT OR MODIFICATIONS AUTHORIZED BY THIS AUTHORITY TO CONSTRUCT, ThIS IS NOT a PERMIT TO OPERATE Approval or denlal of a PERMIT TO OPERATE will be made after en inspecilon to verify that the equipment hag been constructed in accerclance with the approved plant, specifications and conditions of thls Authorily to Conslruct, and to dotermine if the equipment can be operated in complance with ail Fules and Regulations of the San Joaquin Valley Unifled Air Polluition Control Digtict. Unless construction has commenced pursuant to Rule 2050 , this Authority to Construct shall expire and applicalion shall be cancolled two years from the date of issuance. The appilcant is responsible for complying with all laws, ordinances and regulations of all-ether govemmental agenctes which may pertain to the above equipment
Seyed Sadredin, Execuliús biractory Apco


Amaud Majolle, -íreclor of Permit Services

6. Alternate equipment shall be of the same class and category of source as the equipment anthorized by the Authority to Construct. [District Rule 2201]
7. No emission factor and no emission shall be greater for the alternate equipment than for the proposed equipment. No changes in the hours of operation, operating rate, throughput, or firing rate may be authorized for any aiternate equipment. [District Rule 2201]
8. The exhaust stack shall vent vertically upward. The vertical exhaust flow shall not be impeded by a rain cap (flapper ok), roof overharng, or any other obstruction. [District Rule 4102]
9. The unit shall always operate at least 805 meters away from the nearest receptor. [District Rule 4]02]
10. Flare shall be equipped with continuous pilot fired only on natural gas, LPG, or propane. [District Rules 2201 and 4311]
11. Flare outlet shall be equipped with an automatic ignition system, or, shall operate with a pilot flame present at all times when combustible gases are vented through the flare. The pilot need not be present when the flare is isolated for required flate maintenance. [40 CFR 60.18(c)(2), District Rule 4311, 5.3]
12. Flare shall be equipped with an operating flow-sensing ignition system, an operating heat sensing device such as a thermocouple, ultraviolet beam sensor, infrared sensor, or an equivalent operating device capable of continuousiy detecting at least one pilot flame or the flare flame is present. [District Rule 431]]
13. Gas lines to flare shall be equipped with operational, volumetric flow rate indicators. [District Rule 4311 ]
14. Flare air-assist blower shall be maintained and operated for smokeless combustion, i.e. no visible emissions in excess of \(5 \%\) opacity or \(1 / 4\) Ringelmann except for periods not to exceed a total of 5 minutes during any 2 consecutive hours. [40 CFR 60.18 (c)(1), District Rules 2201, 4001, and 4311]
15. Demonstration of compliance with the visibie emissions limit of this permit shall be conducted at least annually, using EPA Method 22. The observation period shall be 2 hours. [40 CFR 60.18(f)(1)]
16. Flare shall be designed and operated to reduce VOC emissions from C-2872-64 and '-66 by at least \(99 \%\) by weight. [District Rule 2201]
17. Emissions rates from the flare shall not exceed any of the following limits: \(0.068 \mathrm{lb}-\mathrm{NOw} / \mathrm{MMBtu}, 0.0051 \mathrm{lb}-\) S0x/MMBtu, \(0.026 \mathrm{lb}-\mathrm{PM} 10 / \mathrm{MMBtu}, 0.370 \mathrm{bb}-\mathrm{CO} / \mathrm{MMBtu}\), or \(0.063 \mathrm{Fb}-\mathrm{VOC/MMBtu}\). [District Rule 220 l ]
18. Heat input to the flare shall not exceed 365 MMBtu in any one day nor \(133,225 \mathrm{MMB}\) tu per calendar year. [District Rule 2201]
19. Sulfur content of gas flared shall not exceed 1.8 grain-S/100 scf. (District Rules 2201 and 4801]
20. Sulfur content and higher heating value of the flared gas shall be tested within 60 days of startup and not less than annually thereafter. [District Rule 2201]
21. Hydrogen sulfide content of vent gas shall be determined using ASTM Method D 1945-96, ASTM Method UOP 53997, ASTM Method D 4084-94, or ASTM Method D 4810-88. Applicant may use other test method(s) with prior written approval from the APCO. [District Rules 1081 and 4311]
22. Pilot/purge gas sulfur content shall be determined using method AS1M D 1072, grab sample analysis by GCFPD/TCD performed in the laboratory, or by certified copies of the gas sulfur content from the gas supplier. If monjtored using continuous analycers not employing gas chromatography, the total sulfur content shall be determined by using EPA Method D4468-85. Fuel gas hhv shall be determined using ASTM D1826 or D1945 in conjunction with ASTM D3588. Applicant may use other test method(s) with prior written approval from the APCO. [District Rule 1081]
23. Measured higher heating value and volume (scf) of gas flared shall be used to determine compliance with heat input limits. [Districl Rule 2201]
24. Upon request, the operator shall make available, to the APCO the compliance detemination records that demonstrate compliance with the provisions of 40 CFR 60.18 , (c)( \(3+1\) (hond (c)(5). [District Rule 4311]
 4311]
26. Flares shall only be used with the net heating value of the gas being combusted being \(300 \mathrm{Btu} / \mathrm{scf}\) or greater if the flare is air-assisted or steam-assisted. [40 CFR 60.18 (c)(3)]
27. The net heating value of the gas being combusted in a flare shall be calculated annually, pursuant to 40 CFR 60.18(f)(3) and using EPA Method 18, ASTM D1946, and ASTM D2382. [40 CFR 60.18 (f)(3-6)]
28. Air-assisted flares shall be operated with an exit velocity less than \(V\) max, as determined by the equation specified in paragraph 40 CPR 60.18 (f)(6). [40 CFR 60.18 (c)(5)]
29. The actual exit velocity of a flare shall be determined by dividing the volumetric flowrate (in units of standard temperature and pressure), as determined by Reference Methods \(2,2 \mathrm{~A}, 2 \mathrm{C}\), or 2 D as appropriate; by the unobstructed (free) cross sectional area of the flare tip. [ 40 CFR 60.18 (f)(4)]
30. Permitter shall submit and have approved by the APCO a flare minimization plan prior to operating the flare authorized by this permit. [District Rule 4311]
31. Flaring shall be consistent with the operator's approved flare minimization plan (FMP), pursuant to Section 6.5 of Rule 4311, and all commitments listed in that plan have been met. This standard shall nor apply if the APCO determines that the flaring is caused by an emergency as defined by Section 3.7 of Rule 4311 and is necessary to prevent an accident, hazard or release of vent gas directly to the atmosphere. [District Rule 4311]
32. The operator of a flare subject to flare minimization requirements pursuant to Section 5.8 shall monitor the vent gas flow to the flare with a flow measuring device or other parameters as specified in the Permit to Operate. The operator shall maintain records pursuant to Section 6.1.7 of Rule 4311. Flares that the operator can verify, based on permit conditions, are not capable of producing reportable flare events pursuant to Section 6.2 .2 of Rule 4311 shall not be required to monitor vent gas flow to the flare. [District Rule 4311]
33. Permittee shall keep a copy of flare minimization plan on site for District inspection upon request. [40 CFR 60.18 , Rule 431 :]
34. Permitee shall keep accurate records of (1) daily, and annual volume (sf) of gas flared; (2) flare gas sulfur content test results; and (3) flare gas higher heating value test results. [District Rules 2201 and 4311]
35. Copies of compliance determination pursuant to 40 CF 60.18 shall be made readily available to the \(A P C O, A R B\), and EPA upon request for a minimum of 5 years. [District Rules 1070 and 4311]
36. Semi-annual reports of all periods without the presence of a flare pilot flame shall be furnished to the District Compliance Division and EPA. [District Rule 4001, 40CFR 60.115b(d)(3)]
37. Records shall be maintained of all periods when the flare pilot flame is absent. [District Rule 40CFR 60.115(d)(2)]
38. All records shall be maintained and retained on-site for a period of at least 5 years and shall be made available for District inspection upon request. [District Rules 1070, 2201 and 4311]
```


[^0]:    DEL listed on current PTO $\times 365$ days/yr
    **LACT Unit emissions catculated in the project Attachment IV

[^1]:    OEL listed on current PTO $\times 365$ days/yr

