FEB 10 2015

Dan Martin
E & J Gallo Winery
18000 W River Rd
Livingston, CA 95334

Re: Notice of Preliminary Decision - Authority to Construct
Facility Number: N-1237
Project Number: N-1143697

Dear Mr. Martin:

Enclosed for your review and comment is the District's analysis of E & J Gallo Winery's application for an Authority to Construct for the installation of 5 wine and distilled spirit storage tanks, at 18000 W River Rd, Livingston, CA.

The notice of preliminary decision for this project will be published approximately three days from the date of this letter. After addressing all comments made during the 30-day public notice period, the District intends to issue the Authority to Construct. Please submit your written comments on this project within the 30-day public comment period, as specified in the enclosed public notice.

Thank you for your cooperation in this matter. If you have any questions regarding this matter, please contact Mr. Jesse A. Garcia of Permit Services at (559) 230-5900.

Sincerely,

Arnaud Marjollet
Director of Permit Services

Enclosures

cc: Mike Tollstrup, CARB (w/ enclosure) via email
cc: Gerardo C. Rios, EPA (w/ enclosure) via email
I. Proposal

E & J Gallo Winery has requested Authority to Construct (ATC) permits for the installation of five new wine and distilled spirit tanks. These tanks will be used for wine and distilled spirit storage.

E & J Gallo Winery received their Title V Permit. This modification can be classified as a Title V significant modification pursuant to Rule 2520, and can be processed with a Certificate of Conformity (COC). But the facility has not requested that this project be processed in that manner; therefore, E & J Gallo Winery will be required to submit a Title V significant modification application prior to operating under the revised provisions of the ATCs issued with this project.

II. Applicable Rules

Rule 2201 New and Modified Stationary Source Review Rule (4/21/11)
Rule 2410 Prevention of Significant Deterioration (6/16/11)
Rule 2520 Federally Mandated Operating Permits (6/21/01)
Rule 4001 New Source Performance Standards (4/14/99)
Rule 4002 National Emissions Standards for Hazardous Air Pollutants (5/20/04)
Rule 4102 Nuisance (12/17/92)
Rule 4623 Storage of Organic Liquids (05/19/05)
Rule 4694 Wine Fermentation and Storage Tanks (12/15/05)
CH&SC 41700 Health Risk Assessment
CH&SC 42301.6 School Notice
Public Resources Code 21000-21177: California Environmental Quality Act (CEQA)
California Code of Regulations, Title 14, Division 6, Chapter 3, Sections 15000-15387: CEQA Guidelines
III. Project Location

The facility is located at 18000 W River Rd in Livingston, CA. The equipment is not located within 1,000 feet of the outer boundary of a K-12 school. Therefore, the public notification requirement of California Health and Safety Code 42301.6 is not applicable to this project.

IV. Process Description

E & J Gallo Winery - Livingston produces red and white wines and distilled alcoholic beverages which are stored and processed in the subject storage tanks. These tanks may hold wine and spirits with ethanol contents up to 95% by volume.

V. Equipment Listing

N-1237-776-0: 6,000 GALLON INSULATED STAINLESS STEEL WINE AND DISTILLED SPIRITS STORAGE TANK (TANK D601) WITH PRESSURE/VACUUM VALVE AND INSULATION, OR EQUIVALENT

N-1237-777-0: 6,000 GALLON INSULATED STAINLESS STEEL WINE AND DISTILLED SPIRITS STORAGE TANK (TANK D602) WITH PRESSURE/VACUUM VALVE AND INSULATION, OR EQUIVALENT

N-1237-778-0: 3,500 GALLON INSULATED AND GLYCOL JACKETED STAINLESS STEEL WINE AND DISTILLED SPIRITS STORAGE TANK (TANK D301) WITH PRESSURE/VACUUM VALVE AND INSULATION, OR EQUIVALENT

N-1237-779-0: 3,500 GALLON INSULATED AND GLYCOL JACKETED STAINLESS STEEL WINE AND DISTILLED SPIRITS STORAGE TANK (TANK D302) WITH PRESSURE/VACUUM VALVE AND INSULATION, OR EQUIVALENT

N-1237-780-0: 3,500 GALLON INSULATED AND GLYCOL JACKETED STAINLESS STEEL WINE AND DISTILLED SPIRITS STORAGE TANK (TANK D303) WITH PRESSURE/VACUUM VALVE AND INSULATION, OR EQUIVALENT

VI. Emission Control Technology Evaluation

VOCs (ethanol) are emitted from wine and spirit storage tanks as a result of both working losses (which occur when the liquid level in the tank changes) and breathing losses (expansion and contraction effects due to temperature variations). The proposed pressure/vacuum valve limits these emissions by requiring the maximum amount of variation in tank pressure before allowing the tank to vent to the atmosphere or allowing air admission to the tank. When the storage tanks are insulated, breathing losses are considered to be negligible.
VII. General Calculations

A. Assumptions

- The proposed tanks will only be used for red and white wine and distilled spirits storage
- Typically, for enclosed tanks with refrigeration and/or insulation (or equivalent) and P/N valves, breathing losses from storage of spirits are assumed to be negligible
- Storage tank maximum liquid storage temperature = 80 °F
- Maximum daily liquid storage temperature = 81.0 °F (per FYI-295)
- Maximum annual liquid storage temperature = 63.3 °F (per FYI-295)
- Storage tank daily and annual maximum ethanol content of stored wine/spirits is 95%

B. Emission Factors

Tanks 4.0 will be used to calculate the storage emissions from the new tanks.

C. Calculations

1. Pre-Project Potential to Emit (PE1)

Since these are new emissions units (storage), PE1 = 0 (all pollutants) for these tanks.

2. Post Project Potential to Emit (PE2)

The new wine and distilled spirit tanks will be used for storage only. Two Tanks 4.0 runs have been performed; one run was performed using the daily throughput to calculate the daily post-project potential to emit by dividing the month of February emissions by the number of days in the month and one using the annual throughput to calculate the annual post-project potential to emit. See Appendix A for the Tanks 4.0 runs for each tank and a summary of emissions from storage.

<table>
<thead>
<tr>
<th>Tanks</th>
<th>Daily Storage (gal/day), ea.</th>
<th>Annual Storage (gal/year), ea.</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-1237-776-0 and -777-0</td>
<td>60,000</td>
<td>120,000</td>
</tr>
<tr>
<td>N-1237-778-0 through -780-0</td>
<td>35,000</td>
<td>78,000</td>
</tr>
</tbody>
</table>

3. Pre-Project Stationary Source Potential to Emit (SSPE1)

Pursuant to Section 4.9 of District Rule 2201, the Pre-Project Stationary Source Potential to Emit (SSPE1) is the Potential to Emit (PE) from all units with valid Authorities to Construct (ATC) or Permits to Operate (PTO) at the Stationary Source and the quantity of emission reduction credits (ERC) which have been banked since September 19, 1991 for Actual...
reduction credits (ERC) which have been banked since September 19, 1991 for Actual Emissions Reductions that have occurred at the source, and which have not been used on-site.

This project only concerns VOC emissions. This facility acknowledges that its VOC emissions are already above the Offset and Major Source Thresholds for VOC emissions; therefore, SSPE1 calculations are not necessary.

4. Post Project Stationary Source Potential to Emit (SSPE2)

Pursuant to Section 4.10 of District Rule 2201, the Post Project Stationary Source Potential to Emit (SSPE2) is the Potential to Emit (PE) from all units with valid Authorities to Construct (ATC) or Permits to Operate (PTO) at the Stationary Source and the quantity of emission reduction credits (ERC) which have been banked since September 19, 1991 for Actual Emissions Reductions that have occurred at the source, and which have not been used on-site.

This project only concerns VOC emissions. This facility acknowledges that its VOC emissions are already above the Offset and Major Source Thresholds for VOC emissions; therefore, SSPE2 calculations are not necessary.

5. Major Source Determination

Rule 2201 Major Source Determination:

This source is an existing Major Source for VOC emissions and will remain a Major Source for VOC. No change in other pollutants are proposed or expected as a result of this project.

Rule 2410 Major Source Determination:

As determined in Section VII.D.4 of this document, this facility is an existing Rule 2201 major source for VOC emissions. The following table summarizes the potential VOC emissions from one previous permitting action for this stationary source before the proposed project.
<table>
<thead>
<tr>
<th>Project Number</th>
<th>Proposed Permitting Actions</th>
<th>PE (lb-VOC/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-1072605</td>
<td>Applying for In-house PTOs for existing wine storage and</td>
<td>470,985</td>
</tr>
<tr>
<td></td>
<td>fermentation tanks</td>
<td></td>
</tr>
<tr>
<td>N-1110129</td>
<td>Install 2 wine fermentation tanks</td>
<td>8,432</td>
</tr>
<tr>
<td>N-1110722</td>
<td>Convert 7 existing grape juice tanks to wine fermentation tanks</td>
<td>15,680</td>
</tr>
<tr>
<td>N-1113344</td>
<td>Install 104 wine storage and fermentation tanks</td>
<td>94,430</td>
</tr>
<tr>
<td>N-1113395</td>
<td>Install 3 wine storage and fermentation tanks</td>
<td>10,173</td>
</tr>
<tr>
<td>N-1113047</td>
<td>Install 2 distilled spirit tanks</td>
<td>188</td>
</tr>
<tr>
<td>N-1113864</td>
<td>Install an ethanol evaporator system</td>
<td>7,719</td>
</tr>
<tr>
<td>N-1131615</td>
<td>Install 8 wine storage tanks and 24 wine fermentation tanks</td>
<td>85,064</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>692,671</td>
</tr>
</tbody>
</table>

As indicated above, the SSPE for VOC emissions before the proposed project is calculated to be 692,671 pounds per year, equivalent to 346.3 tons per year.

The facility evaluated under this project is not listed as one of the categories specified in 40 CFR 52.21(b)(1)(i). Therefore, the following PSD Major Source threshold for VOC is applicable.

<table>
<thead>
<tr>
<th>PSD Major Source Determination (tons/year)</th>
<th>VOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility PE before Project Increase</td>
<td>346.3</td>
</tr>
<tr>
<td>PSD Major Source Thresholds</td>
<td>250</td>
</tr>
<tr>
<td>PSD Major Source?</td>
<td>Yes</td>
</tr>
</tbody>
</table>

As shown above, the facility is an existing major source for PSD for VOC. Therefore, the facility is an existing Major Source for PSD.

6. Baseline Emissions (BE)

The BE calculation (in lbs/year) is performed pollutant-by-pollutant for each unit within the project, to calculate the QNEC and if applicable, to determine the amount of offsets required.

Pursuant to Section 3.7 of District Rule 2201, BE = Pre-project Potential to Emit for:
- Any unit located at a non-Major Source,
- Any Highly-Utilized Emissions Unit, located at a Major Source,
- Any Fully-Offset Emissions Unit, located at a Major Source, or
- Any Clean Emissions Unit, located at a Major Source.

otherwise,
BE = Historic Actual Emissions (HAE), calculated pursuant to Section 3.22 of District Rule 2201.

Since these are new emissions unit, BE = PE1 = 0 for all pollutants for each unit.

7. SB 288 Major Modification

SB 288 Major Modification is defined in 40 CFR Part 51.165 as "any physical change in or change in the method of operation of a major stationary source that would result in a significant net emissions increase of any pollutant subject to regulation under the Act."

As discussed in Section VII.C.5 above, the facility is an existing Major Source for VOC; however, the project by itself would need to be a significant increase in order to trigger a Major Modification. The emissions units within this project do not have a total potential to emit which is greater than Major Modification thresholds (see table below). Therefore, the project cannot be a significant increase and the project does not constitute a Major Modification.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Project PE (lb/year)</th>
<th>Threshold (lb/year)</th>
<th>Major Modification?</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>328</td>
<td>50,000</td>
<td>No</td>
</tr>
</tbody>
</table>

8. Federal Major Modification

District Rule 2201, Section 3.17 states that Federal Major Modifications are the same as "Major Modification" as defined in 40 CFR 51.165 and part D of Title I of the CAA. SB 288 Major Modifications are not federal major modifications if they meet the criteria of the "Less-Than-Significant Emissions Increase" exclusion.

A Less-Than-Significant Emissions Increase exclusion is for an emissions increase for the project, or a Net Emissions Increase for the project (as defined in 40 CFR 51.165 (a)(2)(ii)(B) through (D), and (F)), that is not significant for a given regulated NSR pollutant, and therefore is not a federal major modification for that pollutant.

- To determine the post-project projected actual emissions from existing units, the provisions of 40 CFR 51.165 (a)(1)(xxviii) shall be used.
- To determine the pre-project baseline actual emissions, the provisions of 40 CFR 51.165 (a)(1)(xxxv)(A) through (D) shall be used.
- If the project is determined not to be a federal major modification pursuant to the provisions of 40 CFR 51.165 (a)(2)(ii)(B), but there is a reasonable possibility that the project may result in a significant emissions increase, the owner or operator shall comply with all of the provisions of 40 CFR 51.165 (a)(6) and (a)(7).
- Emissions increases calculated pursuant to this section are significant if they exceed the significance thresholds specified in the table below.
The Net Emissions Increases (NEI) for purposes of determination of a “Less-Than-Significant Emissions Increase” exclusion will be calculated below to determine if this project qualifies for such an exclusion.

Net Emission Increase for New Units (NEI\(_N\))

Per 40 CFR 51.165 (a)(2)(ii)(D) for new emissions units in this project,

\[
NEI_N = PE2N - BAE
\]

Since these are new units, BAE for these units is zero and,

\[
NEI_N = PE2N
\]

where \(PE2N\) is the Post Project Potential to Emit for the new emissions units.

\[
NEI_N = PE2N = 328 \text{ lb-VOC/year}
\]

The NEI for this project is thus calculated as follows:

\[
\text{NEI} = NEI_N
\]

\[
\text{NEI} = 328 \text{ lb-VOC/year}
\]

The NEI for this project will be greater than the federal Major Modification threshold of 0 lb-VOC/year. Therefore, this project does not qualify for a “Less-Than-Significant Emissions Increase” exclusion and is thus determined to be a Federal Major Modification for VOC.

9. **Rule 2410 – Prevention of Significant Deterioration (PSD) Applicability Determination**

Rule 2410 applies to pollutants for which the District is in attainment or for unclassified, pollutants. The pollutants addressed in the PSD applicability determination are listed as follows:

- NO\(_2\) (as a primary pollutant)
- SO\(_2\) (as a primary pollutant)
- CO
- PM
- PM\(_{10}\)

The first step of this PSD evaluation consists of determining whether the facility is an existing PSD Major Source or not (See Section VII.C.5 of this document).
In the case the facility is an existing PSD Major Source, the second step of the PSD evaluation is to determine if the project results in a PSD significant increase.

In the case the facility is NOT an existing PSD Major Source but is an existing source, the second step of the PSD evaluation is to determine if the project, by itself, would be a PSD major source.

In the case the facility is new source, the second step of the PSD evaluation is to determine if this new facility will become a new PSD major Source as a result of the project and if so, to determine which pollutant will result in a PSD significant increase.

I. Project Location Relative to Class 1 Area

As demonstrated in the "PSD Major Source Determination" Section above, the facility was determined to be a existing major source for PSD. Because the project is not located within 10 km of a Class 1 area – modeling of the emission increase is not required to determine if the project is subject to the requirements of Rule 2410.

II. Significance of Project Emission Increase Determination

a. Potential to Emit of attainment/unclassified pollutant for New or Modified Emission Units vs PSD Significant Emission Increase Thresholds

As a screening tool, the potential to emit from all new and modified units is compared to the PSD significant emission increase thresholds, and if total potential to emit from all new and modified units is below this threshold, no further analysis will be needed.

| PSD Significant Emission Increase Determination: Potential to Emit (tons/year) |
|--------------------------|---|---|---|---|---|
| | NO2 | SO2 | CO | PM | PM10 |
| Total PE from New and Modified Units | 0 | 0 | 0 | 0 | 0 |
| PSD Significant Emission Increase Thresholds | 40 | 40 | 100| 25 | 15 |
| PSD Significant Emission Increase? | N | N | N | N | N |

As demonstrated above, because the project has a total potential to emit from all new and modified emission units below the PSD significant emission increase thresholds, this project is not subject to the requirements of Rule 2410 due to a significant emission increase and no further discussion is required.
10. Quarterly Net Emissions Change (QNEC)

The QNEC is calculated solely to establish emissions that are used to complete the District's PAS emissions profile screen. Detailed QNEC calculations are included in Appendix D.

VIII. Compliance

Rule 2201 New and Modified Stationary Source Review Rule

A. Best Available Control Technology (BACT)

1. BACT Applicability

BACT requirements are triggered on a pollutant-by-pollutant basis and on an emissions unit-by-emissions unit basis for the following*

- Any new emissions unit with a potential to emit exceeding two pounds per day,
- The relocation from one Stationary Source to another of an existing emissions unit with a potential to emit exceeding two pounds per day,
- Modifications to an existing emissions unit with a valid Permit to Operate resulting in an AIPE exceeding two pounds per day, and/or
- Any new or modified emissions unit, in a stationary source project, which results in an SB 288 Major Modification or a Federal Major Modification, as defined by the rule.

*Except for CO emissions from a new or modified emissions unit at a Stationary Source with an SSPE2 of less than 200,000 pounds per year of CO.

a. New emissions units – PE > 2 lb/day

The applicant is proposing to install new wine and distilled spirits storage tanks with a PE greater than 2 lb/day for VOC. Thus BACT is triggered for VOC for these emissions units.

b. Relocation of emissions units – PE > 2 lb/day

There are no emissions units being relocated from one stationary source to another, hence BACT is not triggered under this category.

c. Modification of emissions units – AIPE > 2 lb/day

As discussed in Section I above, there are no modified emissions units associated with this project; therefore BACT is not triggered.

d. SB 288/Federal Major Modification

As discussed in VII.C.8 above, this project constitutes a Federal Major Modification for VOC emissions. Therefore BACT is triggered for VOC for all emissions units in the project for which there is an emission increase.
2. BACT Guideline

BACT Guidelines 5.4.13 and 5.4.15, applies to the wine storage and distilled spirits storage tanks. [Wine Storage Tanks] and [Distilled Spirits Storage Tanks] respectively. (Appendix B)

3. Top-Down BACT Analysis

Per Permit Services Policies and Procedures for BACT, a Top-Down BACT analysis shall be performed as a part of the application review for each application subject to the BACT requirements pursuant to the District's NSR Rule.

Pursuant to the attached Top-Down BACT Analysis (Appendix B), BACT has been satisfied with the following:

VOC: Insulated tank, pressure/vacuum valve set within 10% of the maximum allowable working pressure of the tank, "gas tight" tank operation and achieve and maintain a continuous storage temperature not exceeding 75 °F within 60 days of completion of fermentation.

B. Offsets

1. Offset Applicability

Pursuant to Section 4.5.3, offset requirements shall be triggered on a pollutant by pollutant basis and shall be required if the Post Project Stationary Source Potential to Emit (SSPE2) equals to or exceeds the offset threshold levels in Table 4-1 of Rule 2201.

Facility emissions are already above the Offset and Major Source Thresholds for VOC emissions; therefore, offsets are triggered.

2. Quantity of Offsets Required

As discussed above, the facility is an existing Major Source for VOC and the SSPE2 is greater than the offset thresholds; therefore offset calculations will be required for this project.

Per Sections 4.7.1 and 4.7.3, the quantity of offsets in pounds per year for VOC is calculated as follows for sources with an SSPE1 greater than the offset threshold levels before implementing the project being evaluated.

Offsets Required (lb/year) = (Σ[PE2 – BE] + ICCE) x DOR, for all new or modified emissions units in the project,

Where,

PE2 = Post Project Potential to Emit, (lb/year)
BE = Baseline Emissions, (lb/year)
ICCE = Increase in Cargo Carrier Emissions, (lb/year)
DOR = Distance Offset Ratio, determined pursuant to Section 4.8

BE = Pre-project Potential to Emit for:
- Any unit located at a non-Major Source,
- Any Highly-Utilized Emissions Unit, located at a Major Source,
- Any Fully-Offset Emissions Unit, located at a Major Source, or
- Any Clean Emissions Unit, Located at a Major Source.

otherwise,

BE = Historic Actual Emissions (HAE)

There are no increases in cargo carrier emissions due to this project. Therefore,

Offsets Required (lb/year) = \(\Sigma [PE2 - BE] \times DOR \)

The project is a Federal Major Modification; therefore, the offset ratio for VOC is 1.5:1.

<table>
<thead>
<tr>
<th>Tank Model (ATCs)</th>
<th>PE2, each (lb-VOC/yr)</th>
<th>Annual BE, each (lb-VOC/yr)</th>
<th>Offsets Required, each (lb-VOC/yr)</th>
<th>Offsets Required @ 1.5:1 DOR, each (lb-VOC/yr)</th>
<th>Total Offsets Required (lb-VOC/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-1237-776-0 and -777-0</td>
<td>83</td>
<td>0</td>
<td>83</td>
<td>125</td>
<td>375</td>
</tr>
<tr>
<td>N-1237-778-0 through -780-0</td>
<td>54</td>
<td>0</td>
<td>54</td>
<td>81</td>
<td>162</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATCs</th>
<th>Offsets, each (lb-VOC/yr)</th>
<th>Quarterly Offsets Required, each</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1st Qtr (lb/qtr)</td>
</tr>
<tr>
<td>N-1237-776-0 and -777-0</td>
<td>83</td>
<td>20</td>
</tr>
<tr>
<td>N-1237-778-0 through -780-0</td>
<td>54</td>
<td>13</td>
</tr>
</tbody>
</table>
Summary of Offsets Required for Each Tank @ 1.5:1 DOR

<table>
<thead>
<tr>
<th>ATCs</th>
<th>Offsets, each (lb-VOC/yr)</th>
<th>Quarterly Offsets Required, each</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1<sup>st</sup> Qtr (lb/qtr)</td>
</tr>
<tr>
<td>N-1237-776-0</td>
<td>125</td>
<td>31</td>
</tr>
<tr>
<td>and -777-0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-1237-778-0</td>
<td>81</td>
<td>20</td>
</tr>
<tr>
<td>through -780-0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (5 Tanks)</td>
<td>537</td>
<td>133</td>
</tr>
</tbody>
</table>

The applicant has stated that the facility plans to use ERC certificates S-4260-1¹, C-1229-1, S-4354-1², S-4126-1, S-4381-1, S-4306-1³, S-4414-1 and/or N-2-1 or their successors, to offset the increases in VOC emissions associated with this project.

The above certificates have available quarterly VOC credits as follows:

<table>
<thead>
<tr>
<th>ERC #</th>
<th>1<sup>st</sup> Quarter</th>
<th>2<sup>nd</sup> Quarter</th>
<th>3<sup>rd</sup> Quarter</th>
<th>4<sup>th</sup> Quarter</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-4260-1</td>
<td>2,125</td>
<td>2,124</td>
<td>2,085</td>
<td>1,965</td>
</tr>
<tr>
<td>C-1229-1</td>
<td>8,075</td>
<td>8,075</td>
<td>8,041</td>
<td>8,040</td>
</tr>
<tr>
<td>S-4354-1</td>
<td>16,065</td>
<td>16,065</td>
<td>16,065</td>
<td>16,065</td>
</tr>
<tr>
<td>S-4126-1</td>
<td>9,931</td>
<td>9,924</td>
<td>9,917</td>
<td>9,917</td>
</tr>
<tr>
<td>S-4381-1</td>
<td>827</td>
<td>771</td>
<td>816</td>
<td>805</td>
</tr>
<tr>
<td>S-4306-1</td>
<td>39,272</td>
<td>39,254</td>
<td>39,237</td>
<td>39,221</td>
</tr>
<tr>
<td>S-4414-1</td>
<td>2,761</td>
<td>2,761</td>
<td>2,783</td>
<td>2,783</td>
</tr>
<tr>
<td>N-2-1</td>
<td>9</td>
<td>9</td>
<td>26</td>
<td>28</td>
</tr>
</tbody>
</table>

As seen above, the facility has sufficient credits to fully offset the quarterly VOC emissions increases associated with this project.

Proposed Rule 2201 (offset) Conditions:

N-1237-776-0 and -777-0

- Prior to operating equipment under this Authority to Construct, permittee shall surrender VOC emission reduction credits for the following quantity of emissions: 1st quarter - 20 lb, 2nd quarter - 21 lb, 3rd quarter - 21 lb, and fourth quarter - 21 lb. Offsets shall be provided at the applicable offset ratio specified in Table 4-2 of Rule 2201 (as amended 04/21/11). [District Rule 2201]
- ERC Certificate Numbers S-4260-1, C-1229-1, S-4354-1, S-4126-1, S-4381-1, S-4306-1, S-4414-1 and/or N-002-1(or a certificate split from these certificates) shall be used to supply the required offsets, unless a revised offsetting proposal is received and approved by the District, upon which this Authority to Construct shall be reissued, administratively specifying the new offsetting proposal. Original public noticing

¹ This certificate is the successor of S-4160-1.
² This certificate is the successor of S-3805-1.
³ This certificate is the successor of S-4230-1.
requirements, if any, shall be duplicated prior to reissuance of this Authority to Construct. [District Rule 2201]

N-1237-778-0 through -780-0

- Prior to operating equipment under this Authority to Construct, permittee shall surrender VOC emission reduction credits for the following quantity of emissions: 1st quarter - 13 lb, 2nd quarter - 13 lb, 3rd quarter - 14 lb, and fourth quarter - 14 lb. Offsets shall be provided at the applicable offset ratio specified in Table 4-2 of Rule 2201 (as amended 04/21/11). [District Rule 2201]

- ERC Certificate Numbers S-4260-1, C-1229-1, S-4354-1, S-4126-1, S-4381-1, S-4306-1, S-4414-1 and/or N-002-1 (or a certificate split from these certificates) shall be used to supply the required offsets, unless a revised offsetting proposal is received and approved by the District, upon which this Authority to Construct shall be reissued, administratively specifying the new offsetting proposal. Original public noticing requirements, if any, shall be duplicated prior to reissuance of this Authority to Construct. [District Rule 2201]

C. Public Notification

1. Applicability

Public noticing is required for:

a. New Major Sources, Federal Major Modifications, and SB288 Major Modifications,
b. Any new emissions unit with a Potential to Emit greater than 100 pounds during any one day for any one pollutant,
c. Any project which results in the offset thresholds being surpassed, and/or
d. Any project with an SSIPE of greater than 20,000 lb/year for any pollutant.
e. Any project which results in a Title V significant permit modification

 a. New Major Sources, Federal Major Modifications, and SB288 Major Modifications

New Major Sources are new facilities, which are also Major Sources. Since this is not a new facility, public noticing is not required for this project for New Major Source purposes.

As demonstrated in VII.C.8, this project is a Federal Major Modification for VOC; therefore, public noticing for Federal Major Modification purposes is required.

b. PE > 100 lb/day

Applications which include a new emissions unit with a PE greater than 100 pounds during any one day for any pollutant will trigger public noticing requirements. As seen in Section VII.C.2 above, this project does not include a new emissions unit which has daily emissions greater than 100 lb/day for any pollutant; therefore public noticing for PE > 100 lb/day purposes is not required.
c. Offset Threshold

The following table compares the SSPE1 with the SSPE2 in order to determine if any offset thresholds have been surpassed with this project.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>SSPE1 (lb/year)</th>
<th>SSPE2 (lb/year)</th>
<th>Offset Threshold</th>
<th>Public Notice Required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>> 20,000</td>
<td>> 20,000</td>
<td>20,000 lb/year</td>
<td>No</td>
</tr>
</tbody>
</table>

As detailed above, there were no thresholds surpassed with this project; therefore public noticing is not required for offset purposes.

d. SSIPE > 20,000 lb/year

Public notification is required for any permitting action that results in a Stationary Source Increase in Permitted Emissions (SSIPE) of more than 20,000 lb/year of any affected pollutant. According to District policy, the SSIPE is calculated as the Post Project Stationary Source Potential to Emit (SSPE2) minus the Pre-Project Stationary Source Potential to Emit (SSPE1), i.e. SSIPE = SSPE2 – SSPE1. The values for SSPE2 and SSPE1 are calculated according to Rule 2201, Sections 4.9 and 4.10, respectively. The SSIPE is compared to the SSIPE Public Notice thresholds in the following table:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>ΣPE2 (lb/year)</th>
<th>ΣPE1 (lb/year)</th>
<th>SSIPE (lb/year)</th>
<th>SSIPE Public Notice Threshold</th>
<th>Public Notice Required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>328</td>
<td>0</td>
<td>328</td>
<td>20,000 lb/year</td>
<td>No</td>
</tr>
</tbody>
</table>

As demonstrated above, the SSIPEs for all pollutants were less than 20,000 lb/year; therefore public noticing for SSIPE purposes is not required.

e. Title V Significant Permit Modification

As shown in the Discussion of Rule 2520 below, this project constitutes a Title V significant modification. Therefore, public noticing for Title V significant modifications is required for this project.

2. Public Notice Action

As discussed above, public noticing is required for this project for Federal Major Modification. Therefore, public notice documents will be submitted to the California Air Resources Board (CARB) and US Environmental Protection Agency (US EPA) and a public notice will be published in a local newspaper of general circulation prior to the issuance of the ATCs for this equipment.
D. Daily Emission Limits (DELs)

DELs and other enforceable conditions are required by Rule 2201 to restrict a unit's maximum daily emissions, to a level at or below the emissions associated with the maximum design capacity. The DEL must be contained in the latest ATC and contained in or enforced by the latest PTO and enforceable, in a practicable manner, on a daily basis. DELs are also required to enforce the applicability of BACT.

For all wine storage tank emissions units affected by this project, the DEL is stated in the form of a daily limit on tank throughput and a maximum ethanol content for wine stored in the tank.

Proposed Rule 2201 (DEL) Conditions:

- The ethanol content of wine/spirits stored in this tank shall not exceed 95.0 percent by volume. [District Rule 2201]
- The temperature of the wine stored in this tank shall be maintained at or below 75 degrees Fahrenheit. The temperature of the stored wine shall be determined and recorded at least once per week. For each batch of wine, the operator shall achieve the storage temperature of 75 degrees Fahrenheit or less within 60 days after completing fermentation, and shall maintain records to show when the required storage temperature of 75 degrees Fahrenheit or less was achieved. [District Rules 2201 and 4694]

N-1237-776-0 and -777-0

- The maximum wine/spirits storage throughput in this tank shall not exceed 60,000 gallons per day. [District Rule 2201]
- The maximum wine/spirits storage throughput in this tank, calculated on a twelve month rolling basis, shall not exceed 120,000 gallons per year. [District Rule 2201]

N-1237-778-0 through -780-0

- The maximum wine/brandy storage throughput in this tank shall not exceed 35,000 gallons per day. [District Rule 2201]
- The maximum wine storage throughput in this tank, calculated on a twelve month rolling basis, shall not exceed 78,000 gallons per year. [District Rule 2201]

E. Compliance Assurance

1. Source Testing

Pursuant to District Policy APR 1705, source testing is not required to demonstrate compliance with Rule 2201.
2. Monitoring

No monitoring is required to demonstrate compliance with Rule 2201.

3. Recordkeeping

Recordkeeping is required to demonstrate compliance with the offsets, public notification and daily emission limit requirements of Rule 2201. The following conditions will be placed on the permits:

- The operator shall record, on a weekly basis, the total gallons of wine contained in the tank and the maximum temperature of the stored wine. [District Rule 4694]
- Daily throughput records, including records of filling and emptying operations, the dates of such operations, a unique identifier for each batch, the volume percent ethanol in the batch, and the volume of wine/spirits transferred, shall be maintained. [District Rules 1070 and 2201]
- All records shall be retained on-site for a period of at least five years and made available for District inspection upon request. [District Rules 1070, 2201 and 4694]

4. Reporting

No reporting is required to demonstrate compliance with Rule 2201.

F. Ambient Air Quality Analysis

Section 4.14.1 of this Rule requires that an ambient air quality analysis (AAQA) be conducted for the purpose of determining whether a new or modified Stationary Source will cause or make worse a violation of an air quality standard. However, since this project involves only VOC and no ambient air quality standard exists for VOC, an AAQA is not required for this project.

G. Compliance Certification

Section 4.15.2 of this Rule requires the owner of a new Major Source or a source undergoing a Federal Major Modification to demonstrate to the satisfaction of the District that all other Major Sources owned by such person and operating in California are in compliance or are on a schedule for compliance with all applicable emission limitations and standards. As discussed in Sections VIII-Rule 2201-C.1.a and VIII-Rule 2201-C.1.b, this source is undergoing an SB288 Major Modification and a Federal Major Modification, therefore this requirement is applicable. Included in Appendix C is E & J Gallo's compliance certification.

H. Alternative Siting Analysis

Alternative siting analysis is required for any project, which constitutes a New Major Source or a Federal Major Modification.

In addition to winery tanks, the operation of a winery requires a large number support equipment, services and structures such as raw material receiving stations, crushers, piping,
filtering and refrigeration units, warehouses, laboratories, bottling and shipping facilities, and administration buildings.

Since the current project involves only a minimal increase in the winery's total tank volume and no change to any other facets of the operation, the existing site will result in the least possible impact from the project. Alternative sites would involve the relocation and/or construction of various support structures and facilities on a much greater scale, and would therefore result in a much greater impact.

Rule 2410 Prevention of Significant Deterioration

The prevention of significant deterioration (PSD) program is a construction permitting program for new major stationary sources and major modifications to existing major stationary sources located in areas classified as attainment or in areas that are unclassifiable for any criteria air pollutant.

As demonstrated above, this project is not subject to the requirements of Rule 2410 due to a significant emission increase and no further discussion is required.

Rule 2520 Federally Mandated Operating Permits

This facility is subject to this Rule, and has received their Title V Operating Permit. Section 3.29 defines a significant permit modification as a "permit amendment that does not qualify as a minor permit modification or administrative amendment."

Section 3.20.5 states that a minor permit modification is a permit modification that does not meet the definition of modification as given in Section 111 or Section 112 of the Federal Clean Air Act. Since this project is a Title I modification (i.e. Federal Major Modification), the proposed project is considered to be a modification under the Federal Clean Air Act. As a result, the proposed project constitutes a Significant Modification to the Title V Permit pursuant to Section 3.29.

As discussed above, the facility has not applied for a Certificate of Conformity (COC); therefore, the facility must apply to modify their Title V permit with a significant modification, prior to operating with the proposed modifications. Continued compliance with this rule is expected. The facility shall not implement the changes requested until the final permit is issued.
Rule 4001 New Source Performance Standards (NSPS)

This rule incorporates NSPS from Part 60, Chapter 1, Title 40, Code of Federal Regulations (CFR); and applies to all new sources of air pollution and modifications of existing sources of air pollution listed in 40 CFR Part 60. However, no subparts of 40 CFR Part 60 apply to wine fermentation and storage tank operations.

Rule 4002 National Emission Standards for Hazardous Air Pollutants (NESHAPs)

This rule incorporates NESHAPs from Part 61, Chapter I, Subchapter C, Title 40, CFR and the NESHAPs from Part 63, Chapter I, Subchapter C, Title 40, CFR; and applies to all sources of hazardous air pollution listed in 40 CFR Part 61 or 40 CFR Part 63. However, no subparts of 40 CFR Part 61 or 40 CFR Part 63 apply to wine fermentation and storage tank operations.

Rule 4102 Nuisance

Rule 4102 states that no air contaminant shall be released into the atmosphere which causes a public nuisance. Public nuisance conditions are not expected as a result of the proposed operations provided the equipment is well maintained. Therefore, the following condition will be listed on each permit to ensure compliance:

- No air contaminant shall be released into the atmosphere which causes a public nuisance.

California Health & Safety Code 41700 (Health Risk Assessment)

District Policy APR 1905 — Risk Management Policy for Permitting New and Modified Sources specifies that for an increase in emissions associated with a proposed new source or modification, the District perform an analysis to determine the possible impact to the nearest resident or worksite.

Ethanol is not a HAP as defined by Section 44321 of the California Health and Safety Code. Therefore, there are no increases in HAP emissions associated with any emission units in this project, therefore a health risk assessment is not necessary and no further risk analysis is required.

Rule 4623 Storage of Organic Liquids

The purpose of this rule is to limit volatile organic compound (VOC) emissions from the storage of organic liquids. This rule applies to any tank with a capacity of 1,100 gallons or greater in which any organic liquid is placed, held, or stored.

However, Section 4.1.4 provides an exemption for tanks used to store fermentation products, byproducts or spirits. The tanks in this project are storage tanks used to store wine and distilled spirits. Therefore, the requirements of this rule are not applicable to this project.
District Rule 4694 Wine Fermentation and Storage Tanks

The purpose of this rule is to reduce emissions of volatile organic compounds (VOC) from the fermentation and bulk storage of wine, or achieve equivalent reductions from alternative emission sources. This rule is applicable to any winery fermenting wine and/or storing wine in bulk containers.

The storage tanks in this project store distilled spirits as well as wine. Therefore, the requirements of this rule are not applicable to the tanks when storing spirits. However, when storing wine, the proposed tanks are subject to this rule; therefore, the following discussion only applies when the tanks are storing wine.

Section 5.1 requires the winery operator achieve Required Annual Emissions Reductions (RAER) equal to at least 35% of the winery's Baseline Fermentation Emissions (BFE). Since the proposed tanks will be used for storage only, this section is not applicable; therefore, no further discussion is required.

Section 5.2 places specific restrictions on wine storage tanks with 5,000 gallons or more in capacity when such tanks are not constructed of wood or concrete. Section 5.2.1 requires tanks N-1237-776-0 and -777-0 to be equipped and operated with a pressure-vacuum relief valve meeting all of the following requirements:

- The pressure-vacuum relief valve shall operate within 10% of the maximum allowable working pressure of the tank,
- The pressure-vacuum relief valve shall operate in accordance with the manufacturer's instructions, and
- The pressure-vacuum relief valve shall be permanently labeled with the operating pressure settings.

The pressure-vacuum relief valve and storage tank shall remain in a gas-tight condition except when the operating pressure of the tank exceeds the valve set pressure. A gas-tight condition shall be determined by measuring the gas leak in accordance with the procedures in EPA Method 21.

The following conditions will be placed on the permits for stainless steel tanks ≥ 5,000 gallons in capacity and used for storage to ensure compliance with the requirements of Section 5.2.1:

- This tank shall be equipped with and operated with a pressure-vacuum relief valve, which shall operate within 10% of the maximum allowable working pressure of the tank, operate in accordance with the manufacturer's instructions, and be permanently labeled with the operating pressure settings. [District Rules 2201 and 4694]
- The pressure-vacuum relief valve and storage tank shall remain in a gas-tight condition, except when the operating pressure of the tank exceeds the valve set pressure. A gas-tight condition shall be determined by measuring the gas leak in accordance with the procedures in EPA Method 21. [District Rules 2201 and 4694]

Section 5.2.2 requires that the temperature of the stored wine be maintained at or below 75° F.
The following condition will be placed on the permits for stainless steel tanks ≥ 5,000 gallons in capacity and used for storage to ensure compliance with the requirements of Section 5.2.2:

- The temperature of the wine stored in this tank shall be maintained at or below 75 degrees Fahrenheit. The temperature of the stored wine shall be determined and recorded at least once per week. For each batch of wine, the operator shall achieve the storage temperature of 75 degrees Fahrenheit or less within 60 days after completing fermentation, and shall maintain records to show when the required storage temperature of 75 degrees Fahrenheit or less was achieved. [District Rule 4694]

Every three years, Section 6.1 and 6.2 require facilities with fermentation operations to submit a Three-Year Compliance Plan and a Three-Year Compliance Plan Verification respectively. The proposed tanks in this project are for wine storage only, and since these sections are not applicable to wine storage operations, no further discussion is required.

Section 6.4.1 requires that records be kept for each fermentation batch. These tanks are not fermenters; therefore this section does not apply.

Section 6.4.2 requires that weekly records be kept of wine volume and temperature in each storage tank. The following conditions will be placed on the permit for each storage tank to ensure compliance with the requirements of Section 6.4.2:

- The operator shall record, on a weekly basis, the total gallons of wine contained in the tank and the maximum temperature of the stored wine. [District Rule 4694]

Section 6.4.3 requires that all monitoring be performed for any CERs as identified in the facility's Three-Year Compliance Plan and that the records of all monitoring be maintained. Since this requirement is for operators mitigation fermentation emission and the proposed tanks are only for wine storage operations, this section is not applicable to wine tanks in this project. Therefore, no further discussion is required.

Section 6.4 requires that records required by this rule be maintained, retained on-site for a minimum of five years, and made available to the APCO upon request. The following conditions will be placed on all permits to ensure compliance:

- All records shall be retained on-site for a period of at least five years and made available for District inspection upon request. [District Rules 1070, 2201 and 4694]

California Health & Safety Code 42301.6 (School Notice)

The District has verified that this site is not located within 1,000 feet of a school. Therefore, pursuant to California Health and Safety Code 42301.6, a school notice is not required.
California Environmental Quality ACT (CEQA)

The California Environmental Quality Act (CEQA) requires each public agency to adopt objectives, criteria, and specific procedures consistent with CEQA Statutes and the CEQA Guidelines for administering its responsibilities under CEQA, including the orderly evaluation of projects and preparation of environmental documents. The San Joaquin Valley Unified Air Pollution Control District (District) adopted its Environmental Review Guidelines (ERG) in 2001. The basic purposes of CEQA are to:

- Inform governmental decision-makers and the public about the potential, significant environmental effects of proposed activities.
- Identify the ways that environmental damage can be avoided or significantly reduced.
- Prevent significant, avoidable damage to the environment by requiring changes in projects through the use of alternatives or mitigation measures when the governmental agency finds the changes to be feasible.
- Disclose to the public the reasons why a governmental agency approved the project in the manner the agency chose if significant environmental effects are involved.

The District performed an Engineering Evaluation (this document) for the proposed project and determined that the project will occur at an existing facility and the project involves negligible expansion of the existing use. Furthermore, the District determined that the project will not have a significant effect on the environment. The District finds that the project is categorically exempt from the provisions of CEQA pursuant to CEQA Guideline § 15301 (Existing Facilities), and finds that the project is exempt per the general rule that CEQA applies only to projects which have the potential for causing a significant effect on the environment (CEQA Guidelines §15061(b)(3)).

IX. Recommendation

Compliance with all applicable rules and regulations is expected. Pending a successful NSR Public Noticing period, issue Authorities to Construct N-1237-776-0 through -780-0 subject to the permit conditions on the attached draft Authorities to Construct In Appendix E.
X. Billing Information

<table>
<thead>
<tr>
<th>Permit Number</th>
<th>Fee Schedule</th>
<th>Fee Description</th>
<th>Annual Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-1237-776-0 and -777-0</td>
<td>3020-05-B</td>
<td>6,000 gallons</td>
<td>$93.00</td>
</tr>
<tr>
<td>N-1237-778-0 through -780-0</td>
<td>3020-05-B</td>
<td>3,500 gallons</td>
<td>$75.00</td>
</tr>
</tbody>
</table>

XI. Appendices

A: Tanks 4.0 Calculations
B: BACT Guidelines and Top Down BACT Analysis
C: Compliance Certification
D: QNEC Calculations
E: Draft ATCs
Appendix A

Tanks 4.0 Calculations
<table>
<thead>
<tr>
<th>% by Volume Alcohol</th>
<th>Average Ya</th>
<th>AMW Average</th>
<th>Total Pound of Emissions</th>
<th>Alcohol Emissions in Pounds</th>
<th>Annual Gallons Through Put</th>
</tr>
</thead>
<tbody>
<tr>
<td>95.0%</td>
<td>0.8611</td>
<td>42.13</td>
<td>57.09</td>
<td>53.70</td>
<td>78,000</td>
</tr>
<tr>
<td>95.0%</td>
<td>0.8611</td>
<td>42.13</td>
<td>57.09</td>
<td>53.70</td>
<td>78,000</td>
</tr>
<tr>
<td>95.0%</td>
<td>0.8611</td>
<td>42.13</td>
<td>57.09</td>
<td>53.70</td>
<td>78,000</td>
</tr>
<tr>
<td>95.0%</td>
<td>0.8611</td>
<td>42.13</td>
<td>87.83</td>
<td>82.61</td>
<td>120,000</td>
</tr>
<tr>
<td>95.0%</td>
<td>0.8611</td>
<td>42.13</td>
<td>87.83</td>
<td>82.61</td>
<td>120,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tank ID</th>
<th>% by Volume Alcohol</th>
<th>Average Ya</th>
<th>AMW Average</th>
<th>Total Pound of Emissions</th>
<th>Total Pound of Emissions (Max Daily)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D301</td>
<td>95.0%</td>
<td>0.8611</td>
<td>42.13</td>
<td>408.57</td>
<td>13.72</td>
</tr>
<tr>
<td>D302</td>
<td>95.0%</td>
<td>0.8611</td>
<td>42.13</td>
<td>408.57</td>
<td>13.72</td>
</tr>
<tr>
<td>D303</td>
<td>95.0%</td>
<td>0.8611</td>
<td>42.13</td>
<td>238.33</td>
<td>8.01</td>
</tr>
<tr>
<td>D601</td>
<td>95.0%</td>
<td>0.8611</td>
<td>42.13</td>
<td>238.33</td>
<td>8.01</td>
</tr>
<tr>
<td>D602</td>
<td>95.0%</td>
<td>0.8611</td>
<td>42.13</td>
<td>238.33</td>
<td>8.01</td>
</tr>
</tbody>
</table>
TANKS 4.0.9d
Emissions Report - Detail Format
Tank Identification and Physical Characteristics

Identification
User Identification: N-1237-776-0 Daily
City:
State:
Company:
Type of Tank: Vertical Fixed Roof Tank
Description:

Tank Dimensions
Shell Height (ft): 12.00
Diameter (ft): 9.00
Liquid Height (ft): 12.00
Avg. Liquid Height (ft): 12.00
Volume (gallons): 5,710.70
Turnovers: 3,817.40
Net Throughput (gal/yr): 21,900,000.00
Is Tank Heated (y/n): Y

Paint Characteristics
Shell Color/Shade: White/White
Shell Condition: Good
Roof Color/Shade: White/White
Roof Condition: Good

Roof Characteristics
Type: Cone
Height (ft): 1.00
Slope (ft/ft) (Cone Roof): 0.22

Breather Vent Settings
Vacuum Settings (psig): 0.00
Pressure Settings (psig): 0.00

Meteorological Data used in Emissions Calculations: Fresno, California (Avg Atmospheric Pressure = 14.56 psia)
N-1237-776-0 Daily - Vertical Fixed Roof Tank

Daily Liquid Surf.
- **Temperature (deg F)**
- **Bulk Temp (deg F)**
- **Vapor Pressure (psia)**
- **Vapor Mol. Weight**
- **Liquid Mol. Weight**
- **Vapor Mass Fract.**
- **Liquid Mass Fract.**
- **Basis for Vapor Pressure Calculations**

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wine 95.0 % Vol Alcohol</td>
<td>Jan</td>
<td>81.00</td>
<td>81.00</td>
<td>81.00</td>
<td>1.2788</td>
<td>1.2788</td>
<td>1.2788</td>
<td>42.1299</td>
<td></td>
<td></td>
<td>Option 1: VP70 = 89886 VP80 = 1.23462</td>
</tr>
<tr>
<td>Wine 95.0 % Vol Alcohol</td>
<td>Feb</td>
<td>81.00</td>
<td>81.00</td>
<td>81.00</td>
<td>1.2788</td>
<td>1.2788</td>
<td>1.2788</td>
<td>42.1299</td>
<td></td>
<td></td>
<td>Option 1: VP70 = 89886 VP80 = 1.23462</td>
</tr>
<tr>
<td>Wine 95.0 % Vol Alcohol</td>
<td>Mar</td>
<td>81.00</td>
<td>81.00</td>
<td>81.00</td>
<td>1.2788</td>
<td>1.2788</td>
<td>1.2788</td>
<td>42.1299</td>
<td></td>
<td></td>
<td>Option 1: VP70 = 89886 VP80 = 1.23462</td>
</tr>
<tr>
<td>Wine 95.0 % Vol Alcohol</td>
<td>Apr</td>
<td>81.00</td>
<td>81.00</td>
<td>81.00</td>
<td>1.2788</td>
<td>1.2788</td>
<td>1.2788</td>
<td>42.1299</td>
<td></td>
<td></td>
<td>Option 1: VP70 = 89886 VP80 = 1.23462</td>
</tr>
<tr>
<td>Wine 95.0 % Vol Alcohol</td>
<td>May</td>
<td>81.00</td>
<td>81.00</td>
<td>81.00</td>
<td>1.2788</td>
<td>1.2788</td>
<td>1.2788</td>
<td>42.1299</td>
<td></td>
<td></td>
<td>Option 1: VP70 = 89886 VP80 = 1.23462</td>
</tr>
<tr>
<td>Wine 95.0 % Vol Alcohol</td>
<td>Jun</td>
<td>81.00</td>
<td>81.00</td>
<td>81.00</td>
<td>1.2788</td>
<td>1.2788</td>
<td>1.2788</td>
<td>42.1299</td>
<td></td>
<td></td>
<td>Option 1: VP70 = 89886 VP80 = 1.23462</td>
</tr>
<tr>
<td>Wine 95.0 % Vol Alcohol</td>
<td>Jul</td>
<td>81.00</td>
<td>81.00</td>
<td>81.00</td>
<td>1.2788</td>
<td>1.2788</td>
<td>1.2788</td>
<td>42.1299</td>
<td></td>
<td></td>
<td>Option 1: VP70 = 89886 VP80 = 1.23462</td>
</tr>
<tr>
<td>Wine 95.0 % Vol Alcohol</td>
<td>Aug</td>
<td>81.00</td>
<td>81.00</td>
<td>81.00</td>
<td>1.2788</td>
<td>1.2788</td>
<td>1.2788</td>
<td>42.1299</td>
<td></td>
<td></td>
<td>Option 1: VP70 = 89886 VP80 = 1.23462</td>
</tr>
<tr>
<td>Wine 95.0 % Vol Alcohol</td>
<td>Sep</td>
<td>81.00</td>
<td>81.00</td>
<td>81.00</td>
<td>1.2788</td>
<td>1.2788</td>
<td>1.2788</td>
<td>42.1299</td>
<td></td>
<td></td>
<td>Option 1: VP70 = 89886 VP80 = 1.23462</td>
</tr>
<tr>
<td>Wine 95.0 % Vol Alcohol</td>
<td>Oct</td>
<td>81.00</td>
<td>81.00</td>
<td>81.00</td>
<td>1.2788</td>
<td>1.2788</td>
<td>1.2788</td>
<td>42.1299</td>
<td></td>
<td></td>
<td>Option 1: VP70 = 89886 VP80 = 1.23462</td>
</tr>
<tr>
<td>Wine 95.0 % Vol Alcohol</td>
<td>Nov</td>
<td>81.00</td>
<td>81.00</td>
<td>81.00</td>
<td>1.2788</td>
<td>1.2788</td>
<td>1.2788</td>
<td>42.1299</td>
<td></td>
<td></td>
<td>Option 1: VP70 = 89886 VP80 = 1.23462</td>
</tr>
<tr>
<td>Wine 95.0 % Vol Alcohol</td>
<td>Dec</td>
<td>81.00</td>
<td>81.00</td>
<td>81.00</td>
<td>1.2788</td>
<td>1.2788</td>
<td>1.2788</td>
<td>42.1299</td>
<td></td>
<td></td>
<td>Option 1: VP70 = 89886 VP80 = 1.23462</td>
</tr>
</tbody>
</table>
Vapor Space Expansion For

Vapor Space Volume:
- Tank Space Volume
- Standing Losses (lb)
- Vapor Space Volume:
- Tank Diameter (ft)
- Vapor Space Expansion Factor
- Vented Vapor Saturation Factor

Vapor Pressure at Daily Minimum Liquid:
- Daily Average Liquid Temp. (deg F)
- Daily Average Ambient Temp. (deg. F)
- Daily Max. Liquid Surface Temp. (deg F)
- Daily Max. Liquid Surface Temp. (deg R)
- Daily Avg. Liquid Surface Temp. (deg R)

Vapor Densrity (Wm ft):
- Daily Average Minimum Liquid Temp. (deg R)
- Daily Average Minimum Liquid Temp. (deg R)
- Daily Average Minimum Liquid Temp. (deg R)

Emissions Report - Detail Format:
- N-1237-776-0 Daily - Vertical Fixed Roof Tank

Vented Vapor Saturation Factor:
- Vented Vapor Saturation Factor:
- Vapor Pressure at Daily Average Liquid
- Vapor Space Expansion Factor:

Vapor Space Expansion Factor:
- Vapor Space Expansion Factor:
- Vapor Pressure at Daily Average Liquid
- Vapor Pressure at Daily Minimum Liquid
- Vapor Pressure at Daily Maximum Liquid

Vented Vapor Saturation Factor:
- Vented Vapor Saturation Factor:
- Vapor Pressure at Daily Average Liquid:
- Vapor Space Expansion Factor:

Vapor Space Expansion Factor:
- Vapor Space Expansion Factor:
- Vapor Pressure at Daily Average Liquid:
- Vapor Pressure at Daily Minimum Liquid:

Vapor Space Expansion Factor:
- Vapor Space Expansion Factor:
- Vapor Pressure at Daily Average Liquid:

Vapor Space Expansion Factor:
- Vapor Space Expansion Factor:
- Vapor Pressure at Daily Average Liquid:

Vapor Space Expansion Factor:
- Vapor Space Expansion Factor:
- Vapor Pressure at Daily Average Liquid:

Vapor Space Expansion Factor:
- Vapor Space Expansion Factor:
- Vapor Pressure at Daily Average Liquid:

Vapor Space Expansion Factor:
- Vapor Space Expansion Factor:
- Vapor Pressure at Daily Average Liquid:

Vapor Space Expansion Factor:
- Vapor Space Expansion Factor:
- Vapor Pressure at Daily Average Liquid:
<table>
<thead>
<tr>
<th>Vapor Molecular Weight (lb/mole)</th>
<th>42.1299</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vapor Pressure at Daily Average Liquid Surface Temperature (psia)</td>
<td>1.2768</td>
</tr>
<tr>
<td>Net Throughput (gal/mo.)</td>
<td>1,825,000.0000</td>
</tr>
<tr>
<td>Turnover Factor</td>
<td>0.1745</td>
</tr>
<tr>
<td>Maximum Liquid Volume (gal)</td>
<td>5,710.7000</td>
</tr>
<tr>
<td>Maximum Liquid Height (ft)</td>
<td>9.0000</td>
</tr>
<tr>
<td>Tank Diameter (ft)</td>
<td>1.0000</td>
</tr>
<tr>
<td>Working Loss Product Factor</td>
<td>0.1745</td>
</tr>
<tr>
<td>Total Losses (lb)</td>
<td>408.5731</td>
</tr>
</tbody>
</table>

file:///C:/Program%20Files%20(x86)/Tanks409d/summarydisplay.htm

12/30/2014
Emissions Report for: January, February, March, April, May, June, July, August, September, October, November, December

N-1237-776-0 Daily - Vertical Fixed Roof Tank

<table>
<thead>
<tr>
<th>Components</th>
<th>Working Loss</th>
<th>Breathing Loss</th>
<th>Total Emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wine 95.0 % Vol Alcohol</td>
<td>4,902.88</td>
<td>0.00</td>
<td>4,902.88</td>
</tr>
</tbody>
</table>
TANKS 4.0.9d

Emissions Report - Detail Format

Tank Identification and Physical Characteristics

<table>
<thead>
<tr>
<th>Identification</th>
<th>N-1237-778-0 Daily</th>
</tr>
</thead>
<tbody>
<tr>
<td>City</td>
<td></td>
</tr>
<tr>
<td>State</td>
<td></td>
</tr>
<tr>
<td>Company</td>
<td></td>
</tr>
<tr>
<td>Type of Tank</td>
<td>Vertical Fixed Roof Tank</td>
</tr>
<tr>
<td>Description</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tank Dimensions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Shell Height (ft)</td>
<td>12.00</td>
</tr>
<tr>
<td>Diameter (ft)</td>
<td>7.00</td>
</tr>
<tr>
<td>Liquid Height (ft)</td>
<td>12.00</td>
</tr>
<tr>
<td>Avg. Liquid Height (ft)</td>
<td>12.00</td>
</tr>
<tr>
<td>Volume (gallons)</td>
<td>3,454.62</td>
</tr>
<tr>
<td>Turnovers</td>
<td>3,817.40</td>
</tr>
<tr>
<td>Net Throughput (gal/yr)</td>
<td>12,775,000.00</td>
</tr>
<tr>
<td>Is Tank Heated (y/n)</td>
<td>Y</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Paint Characteristics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Shell Color/Shade</td>
<td>White/White</td>
</tr>
<tr>
<td>Shell Condition</td>
<td>Good</td>
</tr>
<tr>
<td>Roof Color/Shade</td>
<td>White/White</td>
</tr>
<tr>
<td>Roof Condition</td>
<td>Good</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Roof Characteristics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Cone</td>
</tr>
<tr>
<td>Height (ft)</td>
<td>1.00</td>
</tr>
<tr>
<td>Slope (ft/ft) (Cone Roof)</td>
<td>0.29</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Breather Vent Settings</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vacuum Settings (psig)</td>
<td>0.00</td>
</tr>
<tr>
<td>Pressure Settings (psig)</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Meteorological Data used in Emissions Calculations: Fresno, California (Avg Atmospheric Pressure = 14.56 psia)
Emissions Report - Detail Format

Liquid Contents of Storage Tank

N-1237-778-0 Daily - Vertical Fixed Roof Tank

<table>
<thead>
<tr>
<th>Mixture/Component</th>
<th>Monthly Avg</th>
<th>Min</th>
<th>Max</th>
<th>Avg</th>
<th>Min</th>
<th>Max</th>
<th>Weight</th>
<th>Mol</th>
<th>Fract</th>
<th>MoL</th>
<th>Basis for Vapor Pressure Calculations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wine 95.0 % Vol Alcohol</td>
<td>Jan</td>
<td>81.00</td>
<td>81.00</td>
<td>81.00</td>
<td>1.2788</td>
<td>1.2788</td>
<td>1.2788</td>
<td>42.1299</td>
<td>41.17</td>
<td>Option 1: VP70 = 0.89886 VP80 = 1.23462</td>
<td></td>
</tr>
<tr>
<td>Wine 95.0 % Vol Alcohol</td>
<td>Feb</td>
<td>81.00</td>
<td>81.00</td>
<td>81.00</td>
<td>1.2788</td>
<td>1.2788</td>
<td>1.2788</td>
<td>42.1299</td>
<td>41.17</td>
<td>Option 1: VP70 = 0.89886 VP80 = 1.23462</td>
<td></td>
</tr>
<tr>
<td>Wine 95.0 % Vol Alcohol</td>
<td>Mar</td>
<td>81.00</td>
<td>81.00</td>
<td>81.00</td>
<td>1.2788</td>
<td>1.2788</td>
<td>1.2788</td>
<td>42.1299</td>
<td>41.17</td>
<td>Option 1: VP70 = 0.89886 VP80 = 1.23462</td>
<td></td>
</tr>
<tr>
<td>Wine 95.0 % Vol Alcohol</td>
<td>Apr</td>
<td>81.00</td>
<td>81.00</td>
<td>81.00</td>
<td>1.2788</td>
<td>1.2788</td>
<td>1.2788</td>
<td>42.1299</td>
<td>41.17</td>
<td>Option 1: VP70 = 0.89886 VP80 = 1.23462</td>
<td></td>
</tr>
<tr>
<td>Wine 95.0 % Vol Alcohol</td>
<td>May</td>
<td>81.00</td>
<td>81.00</td>
<td>81.00</td>
<td>1.2788</td>
<td>1.2788</td>
<td>1.2788</td>
<td>42.1299</td>
<td>41.17</td>
<td>Option 1: VP70 = 0.89886 VP80 = 1.23462</td>
<td></td>
</tr>
<tr>
<td>Wine 95.0 % Vol Alcohol</td>
<td>Jun</td>
<td>81.00</td>
<td>81.00</td>
<td>81.00</td>
<td>1.2788</td>
<td>1.2788</td>
<td>1.2788</td>
<td>42.1299</td>
<td>41.17</td>
<td>Option 1: VP70 = 0.89886 VP80 = 1.23462</td>
<td></td>
</tr>
<tr>
<td>Wine 95.0 % Vol Alcohol</td>
<td>Jul</td>
<td>81.00</td>
<td>81.00</td>
<td>81.00</td>
<td>1.2788</td>
<td>1.2788</td>
<td>1.2788</td>
<td>42.1299</td>
<td>41.17</td>
<td>Option 1: VP70 = 0.89886 VP80 = 1.23462</td>
<td></td>
</tr>
<tr>
<td>Wine 95.0 % Vol Alcohol</td>
<td>Aug</td>
<td>81.00</td>
<td>81.00</td>
<td>81.00</td>
<td>1.2788</td>
<td>1.2788</td>
<td>1.2788</td>
<td>42.1299</td>
<td>41.17</td>
<td>Option 1: VP70 = 0.89886 VP80 = 1.23462</td>
<td></td>
</tr>
<tr>
<td>Wine 95.0 % Vol Alcohol</td>
<td>Sep</td>
<td>81.00</td>
<td>81.00</td>
<td>81.00</td>
<td>1.2788</td>
<td>1.2788</td>
<td>1.2788</td>
<td>42.1299</td>
<td>41.17</td>
<td>Option 1: VP70 = 0.89886 VP80 = 1.23462</td>
<td></td>
</tr>
<tr>
<td>Wine 95.0 % Vol Alcohol</td>
<td>Oct</td>
<td>81.00</td>
<td>81.00</td>
<td>81.00</td>
<td>1.2788</td>
<td>1.2788</td>
<td>1.2788</td>
<td>42.1299</td>
<td>41.17</td>
<td>Option 1: VP70 = 0.89886 VP80 = 1.23462</td>
<td></td>
</tr>
<tr>
<td>Wine 95.0 % Vol Alcohol</td>
<td>Nov</td>
<td>81.00</td>
<td>81.00</td>
<td>81.00</td>
<td>1.2788</td>
<td>1.2788</td>
<td>1.2788</td>
<td>42.1299</td>
<td>41.17</td>
<td>Option 1: VP70 = 0.89886 VP80 = 1.23462</td>
<td></td>
</tr>
<tr>
<td>Wine 95.0 % Vol Alcohol</td>
<td>Dec</td>
<td>81.00</td>
<td>81.00</td>
<td>81.00</td>
<td>1.2788</td>
<td>1.2788</td>
<td>1.2788</td>
<td>42.1299</td>
<td>41.17</td>
<td>Option 1: VP70 = 0.89886 VP80 = 1.23462</td>
<td></td>
</tr>
</tbody>
</table>
TANKS 4.0.9d
N-1237-778-0 Daily - Vertical Fixed Roof Tank

Detail Calculations (AP-42)

<table>
<thead>
<tr>
<th>Month</th>
<th>January</th>
<th>February</th>
<th>March</th>
<th>April</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>August</th>
<th>September</th>
<th>October</th>
<th>November</th>
<th>December</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standing Losses (b):</td>
<td>0.0000</td>
</tr>
<tr>
<td>Vapor Density (lbm/ft³):</td>
<td>0.0093</td>
</tr>
<tr>
<td>Vapor Space Saturation Factor:</td>
<td>0.9797</td>
</tr>
</tbody>
</table>

Tank Vapor Space Volume:

- Vapor Pressure at Daily Maximum Liquid Temperature
- Vapor Pressure at Daily Minimum Liquid Temperature
- Vapor Pressure at Daily Average Liquid Temperature

Daily Total Solar Insulation:

- Average Liquid Surface Temp. (deg. R):
- Daily Average Ambient Temp. (deg. F):
- Average Liquid Height (ft):

Tank Outage (cone roof):

- Roof Outage (ft):
- Rooftop (ft):
- Roof Slope (ft):
- Roof Radius (ft):

Vapor Density:

- Vapor Density (lbm/ft³):
- Vapor Molecular Weight (lbm/mole):
- Vapor Pressure at Daily Average Liquid Temperature (psi):
- Daily Average Ambient Temp. (deg. F):
- Daily Average Liquid Temperature (deg. F):
- Daily Avg. Liquid Temperature (deg. R):
- Daily Total Solar Insulation Factor (Btu/ft²-day):

Vapor Expansion Factor:

- Vapor Expansion Factor:
- Daily Max. Liquid Temperature Range (deg. R):
- Daily Min. Liquid Temperature Range (deg. R):

Vented Vapor Saturation Factor:

- Vented Vapor Saturation Factor:
- Vapor Pressure at Daily Average Liquid Temperature:
- Vapor Space Outage (ft):

Working Losses (b):

- 238.3343 238.3343 238.3343 238.3343 238.3343 238.3343 238.3343 238.3343 238.3343 238.3343 238.3343 238.3343
<table>
<thead>
<tr>
<th>Vapor Molecular Weight (lb/atom):</th>
<th>42.1299</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vapor Pressure at Daily Average Liquid Surface Temperature (psia):</td>
<td>1.2788</td>
</tr>
<tr>
<td>Net Throughput (gal/min):</td>
<td>1,064,583.3330</td>
</tr>
<tr>
<td>Turnover Factor:</td>
<td>0.1745</td>
</tr>
<tr>
<td>Tank Diameter (ft):</td>
<td>7.0000</td>
<td>7.0000</td>
<td>7.0000</td>
<td>7.0000</td>
<td>7.0000</td>
<td>7.0000</td>
<td>7.0000</td>
<td>7.0003</td>
<td>7.0000</td>
<td>7.0000</td>
<td>7.0000</td>
<td>7.0000</td>
</tr>
<tr>
<td>Working Loss Product Factor:</td>
<td>1.0000</td>
</tr>
<tr>
<td>Total Losses (lb):</td>
<td>238.3343</td>
</tr>
</tbody>
</table>
Emissions Report for: January, February, March, April, May, June, July, August, September, October, November, December

N-1237-778-0 Daily - Vertical Fixed Roof Tank

<table>
<thead>
<tr>
<th>Components</th>
<th>Working Loss</th>
<th>Breathing Loss</th>
<th>Total Emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wine 95.0 % Vol Alcohol</td>
<td>2.860.01</td>
<td>0.00</td>
<td>2.860.01</td>
</tr>
</tbody>
</table>
Emissions Report for: January, February, March, April, May, June, July, August, September, October, November, December

<table>
<thead>
<tr>
<th>Tank Identification</th>
<th>Losses (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-1237-776-0 Daily</td>
<td>4,902.88</td>
</tr>
<tr>
<td>N-1237-778-0 Daily</td>
<td>2,860.01</td>
</tr>
<tr>
<td>Total Emissions for all Tanks:</td>
<td>7,762.89</td>
</tr>
</tbody>
</table>
TANKS 4.0.9d

Emissions Report - Detail Format

Tank Identification and Physical Characteristics

<table>
<thead>
<tr>
<th>Identification</th>
<th>Tank D301, D302, And D303 Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Identification:</td>
<td>Livingston</td>
</tr>
<tr>
<td>City:</td>
<td>California</td>
</tr>
<tr>
<td>Company:</td>
<td>E and J Gallo Winery</td>
</tr>
<tr>
<td>Type of Tank:</td>
<td>Vertical Fixed Roof Tank</td>
</tr>
<tr>
<td>Description:</td>
<td>Stainless steel tank with cone top and insulated. This emission report is for one tank only.</td>
</tr>
</tbody>
</table>

Tank Dimensions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shell Height (ft):</td>
<td>12.00</td>
</tr>
<tr>
<td>Diameter (ft):</td>
<td>7.00</td>
</tr>
<tr>
<td>Liquid Height (ft):</td>
<td>12.00</td>
</tr>
<tr>
<td>Avg. Liquid Height (ft):</td>
<td>12.00</td>
</tr>
<tr>
<td>Volume (gallons):</td>
<td>3,454.62</td>
</tr>
<tr>
<td>Turnovers:</td>
<td>21.01</td>
</tr>
<tr>
<td>Net Throughput (gal/yr):</td>
<td>78,000.00</td>
</tr>
</tbody>
</table>

Paint Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shell Color/Shade:</td>
<td>White/White</td>
</tr>
<tr>
<td>Shell Condition:</td>
<td>Good</td>
</tr>
<tr>
<td>Roof Color/Shade:</td>
<td>White/White</td>
</tr>
<tr>
<td>Roof Condition:</td>
<td>Good</td>
</tr>
</tbody>
</table>

Roof Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Cone</td>
</tr>
<tr>
<td>Height (ft):</td>
<td>1.00</td>
</tr>
<tr>
<td>Slope (ft/ft) (Cone Roof):</td>
<td>0.29</td>
</tr>
</tbody>
</table>

Breather Vent Settings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value (psig)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vacuum Settings:</td>
<td>0.00</td>
</tr>
<tr>
<td>Pressure Settings:</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Meteorological Data used in Emissions Calculations: Fresno, California (Avg Atmospheric Pressure = 14.56 psia)
TANKS 4.0.9d

Emissions Report - Detail Format

Liquid Contents of Storage Tank

Tank D301, D302, And D303 Annual - Vertical Fixed Roof Tank
Livingston, California

<table>
<thead>
<tr>
<th>Mixture/Component</th>
<th>Month</th>
<th>Avg</th>
<th>Min</th>
<th>Max</th>
<th>Avg</th>
<th>Min</th>
<th>Max</th>
<th>Weight</th>
<th>Mol. Fract.</th>
<th>Basis for Vapor Pressure Calculations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wine 95.0% Vol Alcohol</td>
<td>Jan</td>
<td>63.30</td>
<td>63.30</td>
<td>63.30</td>
<td>0.7297</td>
<td>0.7297</td>
<td>0.7297</td>
<td>42.1299</td>
<td>41.17</td>
<td>Option 1: VP60 = 6.6487 VP70 = 8.99866</td>
</tr>
<tr>
<td>Wine 95.0% Vol Alcohol</td>
<td>Feb</td>
<td>63.30</td>
<td>63.30</td>
<td>63.30</td>
<td>0.7297</td>
<td>0.7297</td>
<td>0.7297</td>
<td>42.1299</td>
<td>41.17</td>
<td>Option 1: VP60 = 6.6487 VP70 = 8.99866</td>
</tr>
<tr>
<td>Wine 95.0% Vol Alcohol</td>
<td>Mar</td>
<td>63.30</td>
<td>63.30</td>
<td>63.30</td>
<td>0.7297</td>
<td>0.7297</td>
<td>0.7297</td>
<td>42.1299</td>
<td>41.17</td>
<td>Option 1: VP60 = 6.6487 VP70 = 8.99866</td>
</tr>
<tr>
<td>Wine 95.0% Vol Alcohol</td>
<td>Apr</td>
<td>63.30</td>
<td>63.30</td>
<td>63.30</td>
<td>0.7297</td>
<td>0.7297</td>
<td>0.7297</td>
<td>42.1299</td>
<td>41.17</td>
<td>Option 1: VP60 = 6.6487 VP70 = 8.99866</td>
</tr>
<tr>
<td>Wine 95.0% Vol Alcohol</td>
<td>May</td>
<td>63.30</td>
<td>63.30</td>
<td>63.30</td>
<td>0.7297</td>
<td>0.7297</td>
<td>0.7297</td>
<td>42.1299</td>
<td>41.17</td>
<td>Option 1: VP60 = 6.6487 VP70 = 8.99866</td>
</tr>
<tr>
<td>Wine 95.0% Vol Alcohol</td>
<td>Jun</td>
<td>63.30</td>
<td>63.30</td>
<td>63.30</td>
<td>0.7297</td>
<td>0.7297</td>
<td>0.7297</td>
<td>42.1299</td>
<td>41.17</td>
<td>Option 1: VP60 = 6.6487 VP70 = 8.99866</td>
</tr>
<tr>
<td>Wine 95.0% Vol Alcohol</td>
<td>Jul</td>
<td>63.30</td>
<td>63.30</td>
<td>63.30</td>
<td>0.7297</td>
<td>0.7297</td>
<td>0.7297</td>
<td>42.1299</td>
<td>41.17</td>
<td>Option 1: VP60 = 6.6487 VP70 = 8.99866</td>
</tr>
<tr>
<td>Wine 95.0% Vol Alcohol</td>
<td>Aug</td>
<td>63.30</td>
<td>63.30</td>
<td>63.30</td>
<td>0.7297</td>
<td>0.7297</td>
<td>0.7297</td>
<td>42.1299</td>
<td>41.17</td>
<td>Option 1: VP60 = 6.6487 VP70 = 8.99866</td>
</tr>
<tr>
<td>Wine 95.0% Vol Alcohol</td>
<td>Sep</td>
<td>63.30</td>
<td>63.30</td>
<td>63.30</td>
<td>0.7297</td>
<td>0.7297</td>
<td>0.7297</td>
<td>42.1299</td>
<td>41.17</td>
<td>Option 1: VP60 = 6.6487 VP70 = 8.99866</td>
</tr>
<tr>
<td>Wine 95.0% Vol Alcohol</td>
<td>Oct</td>
<td>63.30</td>
<td>63.30</td>
<td>63.30</td>
<td>0.7297</td>
<td>0.7297</td>
<td>0.7297</td>
<td>42.1299</td>
<td>41.17</td>
<td>Option 1: VP60 = 6.6487 VP70 = 8.99866</td>
</tr>
<tr>
<td>Wine 95.0% Vol Alcohol</td>
<td>Nov</td>
<td>63.30</td>
<td>63.30</td>
<td>63.30</td>
<td>0.7297</td>
<td>0.7297</td>
<td>0.7297</td>
<td>42.1299</td>
<td>41.17</td>
<td>Option 1: VP60 = 6.6487 VP70 = 8.99866</td>
</tr>
<tr>
<td>Wine 95.0% Vol Alcohol</td>
<td>Dec</td>
<td>63.30</td>
<td>63.30</td>
<td>63.30</td>
<td>0.7297</td>
<td>0.7297</td>
<td>0.7297</td>
<td>42.1299</td>
<td>41.17</td>
<td>Option 1: VP60 = 6.6487 VP70 = 8.99866</td>
</tr>
</tbody>
</table>
TANKS 4.0.9d Emissions Report - Detail Format

Detail Calculations (AP-42)

Tank D301, D302, And D303 Annual - Vertical Fixed Roof Tank

Livingston, California

<table>
<thead>
<tr>
<th>Month</th>
<th>January</th>
<th>February</th>
<th>March</th>
<th>April</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>August</th>
<th>September</th>
<th>October</th>
<th>November</th>
<th>December</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standing Losses (ft³):</td>
<td>0.0000</td>
</tr>
<tr>
<td>Vented Vapor Saturation Factor</td>
<td>0.0000</td>
</tr>
<tr>
<td>Vapor Space Volumetric Factor</td>
<td>0.0000</td>
</tr>
<tr>
<td>Vapor Space Expansion Factor</td>
<td>0.0000</td>
</tr>
<tr>
<td>Vapor Density</td>
<td>0.0055</td>
</tr>
<tr>
<td>Vapor Pressure Range (psia):</td>
<td>0.7297</td>
</tr>
<tr>
<td>Vapor Pressure at Daily Average Liquid Surface Temperature (psia):</td>
<td>0.7297</td>
</tr>
<tr>
<td>Vapor Pressure at Daily Minimum Liquid Surface Temperature (psia):</td>
<td>0.7297</td>
</tr>
<tr>
<td>Vapor Pressure at Daily Maximum Liquid Surface Temperature (psia):</td>
<td>0.7297</td>
</tr>
</tbody>
</table>

11/10/2014
<table>
<thead>
<tr>
<th>Description</th>
<th>Value1</th>
<th>Value2</th>
<th>Value3</th>
<th>Value4</th>
<th>Value5</th>
<th>Value6</th>
<th>Value7</th>
<th>Value8</th>
<th>Value9</th>
<th>Value10</th>
<th>Value11</th>
<th>Value12</th>
<th>Value13</th>
<th>Value14</th>
<th>Value15</th>
<th>Value16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vapor Molecular Weight (lb/mol)</td>
<td>42.1299</td>
</tr>
<tr>
<td>Vapor Pressure at Daily Average Liquid Surface Temperature (psia)</td>
<td>0.7297</td>
</tr>
<tr>
<td>Net Throughput (gal/mo.)</td>
<td>6,500.0000</td>
</tr>
<tr>
<td>Turnover Factor</td>
<td>1.0000</td>
</tr>
<tr>
<td>Tank Diameter (ft)</td>
<td>7.0000</td>
</tr>
<tr>
<td>Working Loss Product Factor</td>
<td>1.0000</td>
</tr>
</tbody>
</table>
TANKS 4.0.9d
Emissions Report - Detail Format
Individual Tank Emission Totals

Emissions Report for: January, February, March, April, May, June, July, August, September, October, November, December

Tank D301, D302, And D303 Annual - Vertical Fixed Roof Tank
Livingston, California

<table>
<thead>
<tr>
<th>Components</th>
<th>Working Loss</th>
<th>Breathing Loss</th>
<th>Total Emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wine 95.0 % Vol Alcohol</td>
<td>57.09</td>
<td>0.00</td>
<td>57.09</td>
</tr>
</tbody>
</table>
TANKS 4.0.9d
Emissions Report - Detail Format
Tank Identification and Physical Characteristics

Identification
User Identification: Tank D601 and D602 Annual
City: Livingston
State: California
Company: E and J Gallo Winery
Type of Tank: Vertical Fixed Roof Tank
Description: Stainless steel tank with cone top and insulated. This emission report is for one tank only.

Tank Dimensions
Shell Height (ft): 12.00
Diameter (ft): 9.00
Liquid Height (ft): 12.00
Avg. Liquid Height (ft): 12.00
Volume (gallons): 5,710.70
Turnovers: 21.01
Net Throughput (gal/yr): 120,000.00
Is Tank Heated (y/n): Y

Paint Characteristics
Shell Color/Shade: White/White
Shell Condition: Good
Roof Color/Shade: White/White
Roof Condition: Good

Roof Characteristics
Type: Cone
Height (ft): 1.00
Slope (ft/ft) (Cone Roof): 0.22

Breather Vent Settings
Vacuum Settings (psig): 0.00
Pressure Settings (psig): 0.00

Meteorological Data used in Emissions Calculations: Fresno, California (Avg Atmospheric Pressure = 14.56 psia)

11/10/2014
TANKS 4.0.9d
Emissions Report - Detail Format
Liquid Contents of Storage Tank

Tank D601 and D602 Annual - Vertical Fixed Roof Tank
Livingston, California

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td>63.30</td>
<td>63.30</td>
<td>0.7297</td>
<td>0.7297</td>
<td>0.7297</td>
<td>42.1299</td>
<td>41.7%</td>
<td>Option: 1 VP60 = 64637 VP70 = 89886</td>
</tr>
<tr>
<td>Feb</td>
<td>63.30</td>
<td>63.30</td>
<td>0.7297</td>
<td>0.7297</td>
<td>0.7297</td>
<td>42.1299</td>
<td>41.7%</td>
<td>Option: 1 VP60 = 64637 VP70 = 89886</td>
</tr>
<tr>
<td>Mar</td>
<td>63.30</td>
<td>63.30</td>
<td>0.7297</td>
<td>0.7297</td>
<td>0.7297</td>
<td>42.1299</td>
<td>41.7%</td>
<td>Option: 1 VP60 = 64637 VP70 = 89886</td>
</tr>
<tr>
<td>Apr</td>
<td>63.30</td>
<td>63.30</td>
<td>0.7297</td>
<td>0.7297</td>
<td>0.7297</td>
<td>42.1299</td>
<td>41.7%</td>
<td>Option: 1 VP60 = 64637 VP70 = 89886</td>
</tr>
<tr>
<td>May</td>
<td>63.30</td>
<td>63.30</td>
<td>0.7297</td>
<td>0.7297</td>
<td>0.7297</td>
<td>42.1299</td>
<td>41.7%</td>
<td>Option: 1 VP60 = 64637 VP70 = 89886</td>
</tr>
<tr>
<td>Jun</td>
<td>63.30</td>
<td>63.30</td>
<td>0.7297</td>
<td>0.7297</td>
<td>0.7297</td>
<td>42.1299</td>
<td>41.7%</td>
<td>Option: 1 VP60 = 64637 VP70 = 89886</td>
</tr>
<tr>
<td>Jul</td>
<td>63.30</td>
<td>63.30</td>
<td>0.7297</td>
<td>0.7297</td>
<td>0.7297</td>
<td>42.1299</td>
<td>41.7%</td>
<td>Option: 1 VP60 = 64637 VP70 = 89886</td>
</tr>
<tr>
<td>Aug</td>
<td>63.30</td>
<td>63.30</td>
<td>0.7297</td>
<td>0.7297</td>
<td>0.7297</td>
<td>42.1299</td>
<td>41.7%</td>
<td>Option: 1 VP60 = 64637 VP70 = 89886</td>
</tr>
<tr>
<td>Sep</td>
<td>63.30</td>
<td>63.30</td>
<td>0.7297</td>
<td>0.7297</td>
<td>0.7297</td>
<td>42.1299</td>
<td>41.7%</td>
<td>Option: 1 VP60 = 64637 VP70 = 89886</td>
</tr>
<tr>
<td>Oct</td>
<td>63.30</td>
<td>63.30</td>
<td>0.7297</td>
<td>0.7297</td>
<td>0.7297</td>
<td>42.1299</td>
<td>41.7%</td>
<td>Option: 1 VP60 = 64637 VP70 = 89886</td>
</tr>
<tr>
<td>Nov</td>
<td>63.30</td>
<td>63.30</td>
<td>0.7297</td>
<td>0.7297</td>
<td>0.7297</td>
<td>42.1299</td>
<td>41.7%</td>
<td>Option: 1 VP60 = 64637 VP70 = 89886</td>
</tr>
<tr>
<td>Dec</td>
<td>63.30</td>
<td>63.30</td>
<td>0.7297</td>
<td>0.7297</td>
<td>0.7297</td>
<td>42.1299</td>
<td>41.7%</td>
<td>Option: 1 VP60 = 64637 VP70 = 89886</td>
</tr>
</tbody>
</table>

11/10/2014
TANKS 4.0.9d

Emissions Report - Detail Format

Detail Calculations (AP-42)

Tank D601 and D602 Annual - Vertical Fixed Roof Tank
Landington, California

Month: January, February, March, April, May, June, July, August, September, October, November, December

<table>
<thead>
<tr>
<th>Standing Losses (ft³)</th>
<th>Vapor Space Volume (cu ft)</th>
<th>Vapor Density (lb/m³ ft³)</th>
<th>Vapor Space Expansion Factor</th>
<th>Ventilated Vapor Saturation Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000</td>
<td>21,258</td>
<td>0.0055</td>
<td>0.0000</td>
<td>0.9873</td>
</tr>
</tbody>
</table>

Tank Vapor Volume

- **Vapor Space Volume (cu ft):**
 - January: 21,258 ft³
 - February: 21,258 ft³
 - March: 21,258 ft³
 - April: 21,258 ft³
 - May: 21,258 ft³
 - June: 21,258 ft³
 - July: 21,258 ft³
 - August: 21,258 ft³
 - September: 21,258 ft³
 - October: 21,258 ft³
 - November: 21,258 ft³
 - December: 21,258 ft³

- **Tank Diameter (ft):** 12.0000 ft
- **Tank Shell Height (ft):** 12.0000 ft
- **Average Liquid Height (ft):** 12.0000 ft
- **Roof Outage (fl):** 0.3333
- **Vapor Space Volume (cu ft):** 522.9700
- **Tanks Diameter (ft):** 12.0000 ft
- **Roof Outage (11):** 0.3333

Vapor Pressure

- **Vapor Pressure at Daily Average Liquid:**
 - January: 522.9700 psia
 - February: 522.9700 psia
 - March: 51.1000 psia
 - April: 45.7500 psia
 - May: 21.2058 psia
 - June: 522.9700 psia
 - July: 522.9700 psia
 - August: 522.9700 psia
 - September: 522.9700 psia
 - October: 522.9700 psia
 - November: 21.2058 psia
 - December: 522.9700 psia

- **Ideal Gas Constant R:** 12.0000 psia·ft³/(lb·R)
- **Vapor Space Expansion Factor:** 0.0000
- **Ventilated Vapor Saturation Factor:** 0.9873

Other Calculations

- **Surface Temperature (F):**
 - January: 522.9700°F
 - February: 522.9700°F
 - March: 51.1000°F
 - April: 45.7500°F
 - May: 21.2058°F
 - June: 522.9700°F
 - July: 522.9700°F
 - August: 522.9700°F
 - September: 522.9700°F
 - October: 522.9700°F
 - November: 21.2058°F
 - December: 522.9700°F

- **Tank Vapor Temperature (deg F):**
 - January: 522.9700°F
 - February: 522.9700°F
 - March: 51.1000°F
 - April: 45.7500°F
 - May: 21.2058°F
 - June: 522.9700°F
 - July: 522.9700°F
 - August: 522.9700°F
 - September: 522.9700°F
 - October: 522.9700°F
 - November: 21.2058°F
 - December: 522.9700°F

- **Tank Vapor Pressure at Daily Average Liquid (psia):**
 - January: 522.9700 psia
 - February: 522.9700 psia
 - March: 51.1000 psia
 - April: 45.7500 psia
 - May: 21.2058 psia
 - June: 522.9700 psia
 - July: 522.9700 psia
 - August: 522.9700 psia
 - September: 522.9700 psia
 - October: 522.9700 psia
 - November: 21.2058 psia
 - December: 522.9700 psia

- **Ideal Gas Constant R (psia·ft³/(lb·R)):**
 - January: 10.731 psia·ft³/(lb·R)
 - February: 10.731 psia·ft³/(lb·R)
 - March: 10.731 psia·ft³/(lb·R)
 - April: 10.731 psia·ft³/(lb·R)
 - May: 10.731 psia·ft³/(lb·R)
 - June: 10.731 psia·ft³/(lb·R)
 - July: 10.731 psia·ft³/(lb·R)
 - August: 10.731 psia·ft³/(lb·R)
 - September: 10.731 psia·ft³/(lb·R)
 - October: 10.731 psia·ft³/(lb·R)
 - November: 10.731 psia·ft³/(lb·R)
 - December: 10.731 psia·ft³/(lb·R)

Page 9 of 14

11/10/2014
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vapor Molecular Weight (lb/mole)</td>
<td>42.1299</td>
</tr>
<tr>
<td>Vapor Pressure at Daily Average Liquid Surface Temperature (psia)</td>
<td>0.7297</td>
</tr>
<tr>
<td>Net Throughput (gal/mo)</td>
<td>10,000.0000</td>
</tr>
<tr>
<td>Turnover Factor</td>
<td>1.0000</td>
</tr>
<tr>
<td>Maximum Liquid Volume (gal)</td>
<td>5,710.7000</td>
</tr>
<tr>
<td>Maximum Liquid Height (ft)</td>
<td>12.0000</td>
</tr>
<tr>
<td>Tank Diameter (ft)</td>
<td>9.0000</td>
</tr>
<tr>
<td>Working Loss Product Factor</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

11/10/2014
Emissions Report for: January, February, March, April, May, June, July, August, September, October, November, December

Tank D601 and D602 Annual - Vertical Fixed Roof Tank
Livingston, California

<table>
<thead>
<tr>
<th>Components</th>
<th>Working Loss</th>
<th>Breathing Loss</th>
<th>Total Emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wine 95.0% Vol Alcohol</td>
<td>87.83</td>
<td>0.00</td>
<td>87.83</td>
</tr>
</tbody>
</table>
Emissions Report for: January, February, March, April, May, June, July, August, September, October, November, December

<table>
<thead>
<tr>
<th>Tank Identification</th>
<th>Vertical Fixed Roof Tank</th>
<th>Livingston, California</th>
<th>Losses (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tank D301, D302, And D303 Annual E and J Gallo Winery</td>
<td></td>
<td></td>
<td>57.09</td>
</tr>
<tr>
<td>Tank D601 and D602 Annual E and J Gallo Winery</td>
<td></td>
<td></td>
<td>87.83</td>
</tr>
<tr>
<td>Total Emissions for all Tanks:</td>
<td></td>
<td></td>
<td>144.93</td>
</tr>
</tbody>
</table>
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 5.4.13*

Last Update 10/6/2009

Wine Storage Tank

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>1. Insulation or Equivalent**, Pressure Vacuum Relief Valve (PVRV) set within 10% of the maximum allowable working pressure of the tank; "gas-tight" tank operation; and continuous storage temperature not exceeding 75 degrees F, achieved within 60 days of completion of fermentation.</td>
<td>1. Capture of VOCs and thermal or catalytic oxidation or equivalent (98% control)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Capture of VOCs and carbon adsorption or equivalent (95% control)</td>
<td>3. Capture of VOCs and absorption or equivalent (90% control)</td>
<td>4. Capture of VOCs and condensation or equivalent (70% control)</td>
</tr>
</tbody>
</table>

Tanks made of heat-conducting materials such as stainless steel may be insulated or stored indoors (in a completely enclosed building, except for vents, doors and other essential openings) to limit exposure of diurnal temperature variations. Tanks made entirely of non-conducting materials such as concrete and wood (except for fittings) are considered self-insulating.

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a state implementation plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Top Down BACT Analysis for Wine Storage VOC Emissions

Step 1 - Identify All Possible Control Technologies

The SJVUAPCD BACT Clearinghouse guideline 5.4.13, identifies achieved in practice BACT for wine storage tanks as follows:

1) Insulation or Equivalent**, Pressure Vacuum Relief Valve (PVRV) set within 10% of the maximum allowable working pressure of the tank; "gas-tight" tank operation; and continuous storage temperature not exceeding 75 degrees F, achieved within 60 days of completion of fermentation.

**Tanks made of heat-conducting materials such as stainless steel may be insulated or stored indoors (in a completely enclosed building, except for vents, doors and other essential openings) to limit exposure to diurnal temperature variations. Tanks made entirely of non-conducting materials such as concrete and wood (except for fittings) are considered self-insulating.

The SJVUAPCD BACT Clearinghouse guideline 5.4.13, identifies technologically feasible BACT for wine storage tanks as follows:

2) Capture of VOCs and thermal or catalytic oxidation or equivalent (98% control)
3) Capture of VOCs and carbon adsorption or equivalent (95% control)
4) Capture of VOCs and absorption or equivalent (90% control)
5) Capture of VOCs and condensation or equivalent (70% control)

Step 2 - Eliminate Technologically Infeasible Options

None of the above listed technologies are technologically infeasible.

Step 3 - Rank Remaining Control Technologies by Control Effectiveness

<table>
<thead>
<tr>
<th>Rank</th>
<th>Control</th>
<th>Overall Capture and Control Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Capture of VOCs and thermal or catalytic oxidation or equivalent</td>
<td>98%</td>
</tr>
<tr>
<td>2</td>
<td>Capture of VOCs and carbon adsorption or equivalent</td>
<td>95%</td>
</tr>
<tr>
<td>3</td>
<td>Capture of VOCs and absorption or equivalent</td>
<td>90%</td>
</tr>
<tr>
<td>4</td>
<td>Capture of VOCs and condensation or equivalent</td>
<td>70%</td>
</tr>
<tr>
<td>5</td>
<td>Insulation or Equivalent, Pressure Vacuum Relief Valve (PVRV) set within 10% of the maximum allowable working pressure of the tank; "gas-tight" tank operation; and continuous storage temperature not exceeding 75 degrees F, achieved within 60 days of completion of fermentation</td>
<td>Baseline (Achieved-in-Practice)</td>
</tr>
</tbody>
</table>
Step 4 - Cost Effectiveness Analysis

A cost-effective analysis is performed for control technologies which is more effective than meeting the requirements of option 1 (achieved-in-practice BACT), as proposed by the facility.

Collection System Capital Investment (based on ductwork):
A common feature of all technically feasible options is that they require installation of a collection system for delivering the VOCs from the tanks to the common control device.

The following cost information was provided by the facility, and the bases of the cost information include:

- The costs for the ductwork and the required clean-in-place system are based on information from the 2005 Eichleay Study. The 2005 Eichleay Study was used in development of District Rule 4694 Wine Fermentation and Storage Tanks and includes substantial information on the costs and details of the potential application of VOC controls to wineries and addresses many of the technical issues of the general site specific factors for wineries.
- The collection system consists of stainless steel place ductwork (stainless steel is required due to food grade product status) with isolation valving, connecting the tanks to a common manifold system which ducts the combined vent to the common control device. The cost of dampers and isolation valving, installed in the ductwork, will be included in the cost estimate.
- A minimum duct size is established at six inches diameter at each tank to provide adequate strength for spanning between supports.
- One of the major concerns of a manifold duct system is microorganisms spoiling the product, and transferring from one tank to another. It is possible to completely ruin a tank of one special type of highest proof distilled spirit if a few hundred gallons of medium grade distilled spirit were back fed through the duct. It is necessary to design into the system a positive disconnect of the ducting system when the tanks are not being filled. There are a number of ways this can be done. In this case, an automatic butterfly valve with a physical spool to disconnect the tank from the duct will be utilized.

Per applicant, the overall estimated capital investment for the ductwork, knockout drums, and ducting isolation components is $22,061 for this common collection system. See detail ductwork layout and cost breakdown in Attachment I of this analysis.

The following cost data is taken from EPA Control Cost Manual, Sixth Edition (EPA/452/B 02-001)
Ductwork

<table>
<thead>
<tr>
<th>Cost Description</th>
<th>Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duct Estimate from Eichleay Study 2005 Data</td>
<td>$22,061</td>
</tr>
<tr>
<td>Adjusting factor from 2005 dollars to 2015 dollars (2.75% inflation/year)</td>
<td>1.38</td>
</tr>
<tr>
<td>Inflation adjusted duct cost</td>
<td>$30,444</td>
</tr>
<tr>
<td>The following cost data is taken from EPA Control Cost Manual, Sixth Edition (EPA/452/B-02-001).</td>
<td></td>
</tr>
</tbody>
</table>

Direct Costs (DC)

- Base Equipment Costs (Ductwork) See Above: $30,444
- Instrumentation 10%: $3,044
- Sales Tax 3.3125%[^4]: $1,008
- Freight 5%: $1,522
- Purchased equipment cost: $36,018
- Foundations & supports 8%: $2,881
- Handling & erection 14%: $5,043
- Electrical 4%: $1,441
- Piping 2%: $720
- Painting 1%: $360
- Insulation 1%: $360
- Direct installation costs: $10,805
- Total Direct Costs: $46,823

Indirect Costs (IC)

- Engineering 10%: $3,602
- Construction and field expenses 5%: $1,801
- Contractor fees 10%: $3,602
- Start-up 2%: $720
- Performance test 1%: $360
- Contingencies 3%: $1,081
- Total Indirect Costs: $11,166
- Total Capital Investment (TCI) (DC + IC): $57,989

Annualized Capital Investment = Initial Capital Investment x Amortization Factor

Amortization Factor = \(\left[\frac{0.1(1.1)^{10}}{(1.1)^{10} - 1} \right] = 0.163 \) per District policy, amortizing over 10 years at 10%

Therefore,

Annualized Capital Investment for Ductwork = $57,989 x 0.163 = $9,452

[^4]: Pollution control equipment is qualify for CA tax partial exemption, and the exemption rate is 4.1875%, so the reduced sales tax rate is equal 3.3125% (7.500% - 4.1875%). http://www.boe.ca.gov/sutax/manufacturing_exemptions.htm#Purchasers
Clean-In-Place (CIP) System
A ducting system on a tank farm must have this system to maintain sanitation and quality of the product. The cost of operation of the CIP system has not been estimated. Operation of a CIP system, using typical cleaning agents, will raise disposal and wastewater treatment costs.

<table>
<thead>
<tr>
<th>Cost Description</th>
<th>Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current cost of CIP system</td>
<td>$20,000</td>
</tr>
</tbody>
</table>

The following cost data is taken from EPA Control Cost Manual, Sixth Edition (EPA/452/B-02-001).

Direct Costs (DC)

<table>
<thead>
<tr>
<th>Cost Description</th>
<th>Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Equipment Costs (CIP System) See Above</td>
<td>$20,000</td>
</tr>
<tr>
<td>Instrumentation 10%</td>
<td>$2,000</td>
</tr>
<tr>
<td>Sales Tax 3.3125%</td>
<td>$663</td>
</tr>
<tr>
<td>Freight 5%</td>
<td>$1,000</td>
</tr>
<tr>
<td>Purchased equipment cost</td>
<td>$23,663</td>
</tr>
<tr>
<td>Foundations & supports 8%</td>
<td>$1,893</td>
</tr>
<tr>
<td>Handling & erection 14%</td>
<td>$3,313</td>
</tr>
<tr>
<td>Electrical 4%</td>
<td>$947</td>
</tr>
<tr>
<td>Piping 2%</td>
<td>$473</td>
</tr>
<tr>
<td>Painting 1%</td>
<td>$237</td>
</tr>
<tr>
<td>Insulation 1%</td>
<td>$237</td>
</tr>
<tr>
<td>Direct installation costs</td>
<td>$7,100</td>
</tr>
<tr>
<td>Total Direct Costs</td>
<td>$30,763</td>
</tr>
</tbody>
</table>

Indirect Costs (IC)

<table>
<thead>
<tr>
<th>Cost Description</th>
<th>Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering 10%</td>
<td>$2,366</td>
</tr>
<tr>
<td>Construction and field expenses 5%</td>
<td>$1,183</td>
</tr>
<tr>
<td>Contractor fees 10%</td>
<td>$2,366</td>
</tr>
<tr>
<td>Start-up 2%</td>
<td>$473</td>
</tr>
<tr>
<td>Performance test 1%</td>
<td>$237</td>
</tr>
<tr>
<td>Contingencies 3%</td>
<td>$710</td>
</tr>
<tr>
<td>Total Indirect Costs</td>
<td>$7,335</td>
</tr>
<tr>
<td>Total Capital Investment (TCI) (DC + IC)</td>
<td>$38,098</td>
</tr>
</tbody>
</table>

Annualized Capital Investment = Initial Capital Investment x Amortization Factor

Annualized Capital Investment for one CIP System = $38,098 x 0.163 = $6,210

5 An Allowance of $200,000 for a CIP system should be included in the evaluation for a standard tank farm. A ducting system on a tank farm must have that kind of system to maintain sanitation and quality of the product. Because these tanks are storage only, very small, only 5 tanks in the project, and will have 95% alcohol content most of the time; the estimate was reduced to $20,000.
Option 1 - Capture of VOCs & thermal/catalytic oxidation or equivalent (overall capture & control efficiency of 98%)

The total capital investment cost and installation costs including freight for a Regenerative Thermal Oxidizer (RTO) used in this evaluation are based on the cost information provided by Adwest Technologies, Inc on September 24, 2014 for an RTO handling 537 scfm, which was the smallest system they could provide. The potential flow rate from the tanks proposed in this project is 52 scfm (see Attachment II), equivalent to approximately 10.3% of 537 scfm.

Generally, when estimating costs from a known value, the rule of six-tenths is used to account for economy of scale. However, since the control device required for this project is smaller than the control device in the base project, the cost for the control device in this project will be scaled linearly. Scaling linearly results in lower capital cost and lower cost effectiveness. Therefore, the capital and installation costs provided in the cost estimate will be adjusted by a factor of 0.1 for purposes of this analysis.

<table>
<thead>
<tr>
<th>Thermal or Catalytic Oxidation</th>
<th>Cost Description</th>
<th>Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Size adjusted Regenerative Thermal Oxidizer cost [145,500 x (0.1)]</td>
<td>$14,550</td>
</tr>
<tr>
<td></td>
<td>The following cost data is taken from EPA Control Cost Manual, Sixth Edition (EPA/452/B-02-001).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Direct Costs (DC)</td>
<td></td>
</tr>
<tr>
<td>Base Equipment Costs (Regenerative Thermal Oxidizer System)</td>
<td>See Above</td>
<td>$14,550</td>
</tr>
<tr>
<td>Freight and Startup [22,900 x (0.1)]</td>
<td></td>
<td>$2,290</td>
</tr>
<tr>
<td>Sales Tax 3.3125%</td>
<td></td>
<td>$ 482</td>
</tr>
<tr>
<td>Purchased equipment cost</td>
<td></td>
<td>$17,322</td>
</tr>
<tr>
<td>Foundations & supports 8%</td>
<td></td>
<td>$ 1,386</td>
</tr>
<tr>
<td>Handling & erection 14%</td>
<td></td>
<td>$ 2,425</td>
</tr>
<tr>
<td>Electrical 4%</td>
<td></td>
<td>$ 693</td>
</tr>
<tr>
<td>Piping 2%</td>
<td></td>
<td>$ 346</td>
</tr>
<tr>
<td>Painting 1%</td>
<td></td>
<td>$ 173</td>
</tr>
<tr>
<td>Insulation 1%</td>
<td></td>
<td>$ 173</td>
</tr>
<tr>
<td>Direct installation costs</td>
<td></td>
<td>$ 5,196</td>
</tr>
<tr>
<td>Total Direct Costs</td>
<td></td>
<td>$22,518</td>
</tr>
<tr>
<td></td>
<td>Indirect Costs (IC)</td>
<td></td>
</tr>
<tr>
<td>Engineering 10%</td>
<td></td>
<td>$ 1,732</td>
</tr>
<tr>
<td>Construction and field expenses 5%</td>
<td></td>
<td>$ 866</td>
</tr>
<tr>
<td>Contractor fees 10%</td>
<td></td>
<td>$ 1,732</td>
</tr>
<tr>
<td>Start-up (included above)</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Performance test 1%</td>
<td></td>
<td>$ 173</td>
</tr>
<tr>
<td>Contingencies 3%</td>
<td></td>
<td>$ 520</td>
</tr>
<tr>
<td>Total Indirect Costs</td>
<td></td>
<td>$ 5,023</td>
</tr>
<tr>
<td>Total Capital Investment (TCI) (DC + IC)</td>
<td></td>
<td>$27,541</td>
</tr>
</tbody>
</table>
Annualized Capital Investment = Initial Capital Investment x Amortization Factor

Annualized Capital Investment for two CIP Systems = $27,541 x 0.163 = $4,489

Operation and Maintenance Costs

The Direct annual costs include labor (operating, supervisory, and maintenance), maintenance materials, electricity, and fuel.

Heat of Combustion for waste gas stream -dh(c):

-heat of combustion -dHc = 20,276 Btu/lb
-Daily VOC emissions rate = 340.2 lb/day
-Blower flow rate = 52 scfm

= 74,880 ft³/day

-dh(c) = 13.7 lb/day x 20,276 Btu/lb / 74,880 ft³/day
= 3.71 Btu/ft³

Assuming the waste gas is principally air, with a molecular weight of 28.97 and a corresponding density of 0.0739 lb/scf, the heat of combustion per pound of incoming waste gas is:

-dh(c) = 3.71 Btu/ft³ / 0.0739 lb/ft³
= 50.2 Btu/lb

Fuel Flow Requirement

Q(fuel) = \(\frac{Pw*Qw*\{Cp*[1.1Tf-Tw-0.1Tr]-[-dh(c)]\}}{P(ef)*[-dh(m) - 1.1 Cp * (Tf - Tr)]} \)

Where

-\(Pw = 0.0739 \text{ lb/ft}^3 \)
-\(Cp = 0.255 \text{ Btu/lb-}^\circ\text{F} \)
-\(Qw = 52 \text{ scfm} \)
-\(-dh(m) = 21,502 \text{ Btu/lb for methane} \)
-\(Tr = 77^\circ\text{F assume ambient conditions} \)
-\(P(ef) = 0.0408 \text{ lb/ft}^3 \text{ m, methane at 77^\circ F, 1 atm} \)
-\(Tf = 1600^\circ\text{F} \)
-\(Tw = 1150^\circ\text{F} \)
-\(-dh(c) = 50.2 \text{ Btu/lb} \)

Q = \(\frac{0.0739*52*[0.255*[1.1*1600-1.150-0.1*77]-50.2]}{0.0408*[21,502 - 1.1*0.255*(1,600 - 77)]} \)
= 397 + 861 = 0.5 \text{ ft}^3/\text{min}
Fuel Costs

The cost for natural gas shall be based upon the average price of natural gas sold to “Commercial Consumers” in California for the years 2011, 2012 and 2013.6

\[
\begin{align*}
2013 & = $7.81/\text{thousand ft}^3 \text{ total monthly average} \\
2012 & = $8.29/\text{thousand ft}^3 \text{ total monthly average} \\
2011 & = $7.05/\text{thousand ft}^3 \text{ total monthly average} \\
\text{Average for three years} & = $7.717/\text{thousand ft}^3 \text{ total monthly average}
\end{align*}
\]

\[
\text{Fuel Cost} = 0.5 \text{ cfm} \times 60 \text{ min/day} \times 365 \text{ day/year} \times $7.717/1000 \text{ ft}^3 \\
= $85/\text{year}
\]

Electricity Requirement

\[
\text{Power}_{\text{fan}} = 1.17 \times 10^{-4} \frac{\text{Qw} \times \Delta P}{\epsilon}
\]

Where

\[
\begin{align*}
\Delta P & = \text{Pressure drop Across system} = 10 \text{ in. H}_2\text{O} \\
\epsilon & = \text{Efficiency for fan and motor} = 0.6 \\
\text{Qw} & = 6,200 \text{ scfm}
\end{align*}
\]

\[
\text{Power}_{\text{fan}} = 1.17 \times 10^{-4} \times 52 \text{ cfm} \times 1.5 \times 10 \text{ in. H}_2\text{O} \\
\times 0.60 \times 0.90 \\
= 0.17 \text{ kW}
\]

Electricity Costs

Average cost of electricity to commercial users in California 7:

\[
\begin{align*}
2012 & = $0.1023 \\
2011 & = $0.1012 \\
\text{AVG} & = $0.102
\end{align*}
\]

\[
\text{Electricity Cost} = 0.17 \text{ kW} \times 1 \text{ hours/day} \times 365 \text{ days/year} \times $0.102/\text{kWh} = $6/\text{year}
\]

Total Operating and Maintenance Costs

Annual Costs (Based on: EPA Air Pollution Control Cost Manual, Sixth Edition (January 2002), Section 3.2: VOC Destruction Controls, Chapter 2: Incinerators (September 2000), Table 2.10 - Annual Costs for Thermal and Catalytic Incinerators Example Problem. United States Environmental Protection Agency Office of Air Quality Planning and Standards. Research Triangle Park, North Carolina 27711. EPA/452/B-02-001) 8

6 Energy Information Administration/Natural Gas; Average Price of Natural Gas Sold to Commercial Consumers by State, 2011 - 2013

7 Energy Information Administration/Electric Power; Average Retail Price of Electricity to Ultimate Customers by End-Use Sector, by State, 2011 - 2012

8 http://epa.gov/ttn/calc/dir1/cs3-2ch2.pdf
Annual Costs

<table>
<thead>
<tr>
<th>Direct Annual Cost (DC)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Labor</td>
<td></td>
</tr>
<tr>
<td>Operator</td>
<td>0.5 hr/shift $18.5/hr x 0.5 hr/shift x 2 day/yr 9</td>
</tr>
<tr>
<td>Supervisor</td>
<td>15% of operator</td>
</tr>
<tr>
<td>Maintenance</td>
<td></td>
</tr>
<tr>
<td>Labor</td>
<td>0.5 h/shift $18.5/hr x 0.5 hr/shift x 2 day/yr</td>
</tr>
<tr>
<td>Maintenance</td>
<td>100% of labor</td>
</tr>
<tr>
<td>Utility</td>
<td></td>
</tr>
<tr>
<td>Natural Gas</td>
<td></td>
</tr>
<tr>
<td>Electricity</td>
<td></td>
</tr>
<tr>
<td>Total DC</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Indirect Annual Cost (IC)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Overhead</td>
<td>60% of Labor Cost 0.6 x ($19 + $1 + $19)</td>
</tr>
<tr>
<td>Administrative</td>
<td>2% TCI</td>
</tr>
<tr>
<td>Property Taxes</td>
<td>1% TCI</td>
</tr>
<tr>
<td>Insurance</td>
<td>1% TCI</td>
</tr>
<tr>
<td>Total IC</td>
<td></td>
</tr>
<tr>
<td>Annual Cost (DC + IC)</td>
<td></td>
</tr>
</tbody>
</table>

Total Annual Cost = (Ductwork + CIP System) + RTO + Annual Costs
= $(9,452 + 6,210) + $4,489 + $1,905
= $22,056

Annual Emission Reduction = Uncontrolled Emissions x 0.98
= 328 lb-VOC/year x 0.98 x ton/2,000 lb
= 0.16 tons-VOC/year

Cost Effectiveness = $22,056/year ÷ 0.16 tons-VOC/year
= $137,850/ton-VOC

The cost of VOC reductions for this control system is more than the threshold limit of $17,500/ton. Therefore, the capture and oxidation control system is not cost-effective for this installation.

Option 2 - Capture of VOCs and carbon adsorption or equivalent (overall capture & control efficiency of 95%)

Carbon containment hardware including an inline filter, blower, exhaust silencer and air to air heat exchanger for a 50 cfm system was quoted as $20,000 to $25,000 by David Drewelow of

9 As stated in Attachment II, the tanks are assumed to be filled in 1 hour and the largest tanks will be limited to 2 turnovers/year; therefore, 1 hr/turnover x 2 turnovers/yr = 2 hr/yr or 2 days/year.
Drewelow Remediation Equipment, Inc on February 3, 2015. To be conservative, the District will use $20,000 as the cost for the carbon containment hardware.

The carbon bed operated with steam to regenerate the bed produces a water alcohol mixture. The waste stream or disposal costs have not been analyzed in this project.

Carbon Capital Cost

Annual Emission Reduction = Storage Emissions x 0.86
= 328 lb-VOC/year x 0.86
= 282 lb-VOC/year

Assume a working bed capacity of 20% for carbon (weight of vapor per weight of carbon)

Carbon required = 282 lbs-VOC/year x 1/0.20
= 1,410 lb carbon

David Drewelow also provided a cost of $1.25/lb of carbon which does not include any delivery or servicing fees. Therefore, carbon capital cost = $1.25/lb x 1,410 lb carbon = $1,763
Carbon Adsorption

<table>
<thead>
<tr>
<th>Cost Description</th>
<th>Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon Adsorption cost</td>
<td>$20,000</td>
</tr>
<tr>
<td>Water alcohol tank cost</td>
<td>$5,000</td>
</tr>
<tr>
<td>Carbon Adsorption + water alcohol tank cost</td>
<td>$25,000</td>
</tr>
<tr>
<td>Carbon Capital Cost (see above)</td>
<td>$1,763</td>
</tr>
</tbody>
</table>

The following cost data is taken from EPA Control Cost Manual, Sixth Edition (EPA/452/B-02-001).

Direct Costs (DC)

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Equipment Costs (Carbon Adsorption System + Carbon) See Above</td>
<td>$26,763</td>
</tr>
<tr>
<td>Instrumentation 10%</td>
<td>$2,676</td>
</tr>
<tr>
<td>Sales Tax 3.3125%</td>
<td>$703</td>
</tr>
<tr>
<td>Freight 5%</td>
<td>$1,338</td>
</tr>
<tr>
<td>Purchased equipment cost</td>
<td>$31,480</td>
</tr>
<tr>
<td>Foundations & supports 8%</td>
<td>$2,518</td>
</tr>
<tr>
<td>Handling & erection 14%</td>
<td>$4,407</td>
</tr>
<tr>
<td>Electrical 4%</td>
<td>$1,259</td>
</tr>
<tr>
<td>Piping 2%</td>
<td>$630</td>
</tr>
<tr>
<td>Painting 1%</td>
<td>$315</td>
</tr>
<tr>
<td>Insulation 1%</td>
<td>$315</td>
</tr>
<tr>
<td>Direct installation costs</td>
<td>$9,444</td>
</tr>
<tr>
<td>Total Direct Costs</td>
<td>$40,924</td>
</tr>
</tbody>
</table>

Indirect Costs (IC)

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering 10%</td>
<td>$3,148</td>
</tr>
<tr>
<td>Construction and field expenses 5%</td>
<td>$1,574</td>
</tr>
<tr>
<td>Contractor fees 10%</td>
<td>$3,148</td>
</tr>
<tr>
<td>Start-up 2%</td>
<td>$630</td>
</tr>
<tr>
<td>Performance test 1%</td>
<td>$315</td>
</tr>
<tr>
<td>Contingencies 3%</td>
<td>$944</td>
</tr>
<tr>
<td>Total Indirect Costs</td>
<td>$9,759</td>
</tr>
</tbody>
</table>

Total Capital Investment (TCI) (DC + IC): $50,683
Annualized Capital Investment = Initial Capital Investment x Amortization Factor

Amortization Factor = \[\frac{0.1(1.1)^{10}}{(1.1)^{10} - 1} \] = 0.163 per District policy, amortizing over 10 years at 10%

Therefore,

Annualized Capital Investment = $50,683 x 0.163 = $8,261

Total Annual Cost = Carbon Adsorption System + Ductwork + CIP System
= $8,261 + $9,452 + $6,210
= $23,923

Annual Emission Reduction = Uncontrolled Emissions x 0.86
= 328 lb-VOC/year x 0.86 x ton/2,000 lb
= 0.14 tons-VOC/year

Cost Effectiveness = $23,923/year ÷ 0.14 tons-VOC/year
= $170,879/ton-VOC

The cost of VOC reductions for this control system is more than the threshold limit of $17,500/ton. Therefore, the capture and carbon adsorption control system is not cost-effective for this installation.

Option 3 - Capture of VOCs and absorption or equivalent (overall capture & control efficiency of 90%)

The total capital investment costs and operating costs for an absorption system used in this evaluation are based on the information given in District project N-1133659. The scrubber under project N-1133659 was evaluated for the control of 84,864 pounds of VOC emissions. The potential VOC emissions from this project are 328 pounds, equivalent to approximately 0.4% of the emissions evaluated for control under project N-1133659.

Generally, when estimating costs from a known value, the rule of six-tenths is used to account for economy of scale. However, since the control device required for this project is smaller than the control device in the base project, the cost for the control device in this project will be scaled linearly. Scaling linearly results in lower capital cost and lower cost effectiveness. Therefore, the capital and installation costs provided in the cost estimate will be adjusted by a factor of 0.004 for purposes of this analysis.

Capital Cost for each Water Scrubber unit is as follows: Reactor and Portable Pumping Skids are $60,000 and $7,500 respectively. The total capital cost for all units is $1,215,000 controlling 84,864 lbs-VOC. Therefore, the total capital cost for an equivalent system for this project is estimated to be $4,860.
The following cost data is taken from EPA Control Cost Manual, Sixth Edition (EPA/452/B-02-001).

<table>
<thead>
<tr>
<th>Cost Description</th>
<th>Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refrigerated Scrubber System</td>
<td>$4,860</td>
</tr>
</tbody>
</table>

Direct Costs (DC)

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Equipment Costs (Scrubber System) See Above</td>
<td>$4,860</td>
</tr>
<tr>
<td>Instrumentation ($2,000 per unit, assume 1 unit)</td>
<td>$2,000</td>
</tr>
<tr>
<td>Sales Tax 3.3125%</td>
<td>$161</td>
</tr>
<tr>
<td>Freight (included)</td>
<td>-</td>
</tr>
<tr>
<td>Purchased equipment cost</td>
<td>$7,021</td>
</tr>
<tr>
<td>Foundations & supports (not required)</td>
<td>-</td>
</tr>
<tr>
<td>Handling & erection 2%</td>
<td>$140</td>
</tr>
<tr>
<td>Electrical 1%</td>
<td>$70</td>
</tr>
<tr>
<td>Piping 1%</td>
<td>$70</td>
</tr>
<tr>
<td>Painting (not required)</td>
<td>-</td>
</tr>
<tr>
<td>Insulation (not required)</td>
<td>-</td>
</tr>
<tr>
<td>PLC & Programming</td>
<td>$10,000<sup>10</sup></td>
</tr>
<tr>
<td>Recovered Ethanol Storage Tank (installed)</td>
<td>$5,000</td>
</tr>
<tr>
<td>Direct installation costs</td>
<td>$15,280</td>
</tr>
<tr>
<td>Total Direct Costs (TDC)</td>
<td>$22,301</td>
</tr>
</tbody>
</table>

Indirect Costs (IC)

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering (5% of TDC)</td>
<td>$1,115</td>
</tr>
<tr>
<td>Construction and field expenses (2% of TDC)</td>
<td>$446</td>
</tr>
<tr>
<td>Permits (Building Department) (Allowance)</td>
<td>$10,000</td>
</tr>
<tr>
<td>Contractor fees (2% of TDC)</td>
<td>$446</td>
</tr>
<tr>
<td>Start-up (1% of TDC)</td>
<td>$223</td>
</tr>
<tr>
<td>Source Testing (1 unit x $15,000/unit)</td>
<td>$15,000</td>
</tr>
<tr>
<td>Owner's Cost (Allowance)</td>
<td>$5,556<sup>11</sup></td>
</tr>
<tr>
<td>Total Indirect Costs</td>
<td>$32,786</td>
</tr>
<tr>
<td>Subtotal Capital Investment (SCI)</td>
<td>$55,087</td>
</tr>
<tr>
<td>Project Contingency (20% of SCI)</td>
<td>$11,017</td>
</tr>
<tr>
<td>Total Capital Investment (TCI) (DC + IC)</td>
<td>$66,104</td>
</tr>
</tbody>
</table>

¹⁰ From project N-1133659 for 18 units, PLC & Programming = $180,000 (or $10,000/unit)

¹¹ From project N-1133659 for 18 units, Owner's Cost = $100,000 (or $5,556/unit)
Annualized Capital Investment = Initial Capital Investment x Amortization Factor

Annualized Capital Investment = $66,104 x 0.163 = $10,775.

Wastewater Disposal Costs

The water scrubber will generate ethanol-laden wastewater containing 0.15 tons (295 lbs) of ethanol annually (328 lb/year (uncontrolled emissions) x 0.90 + 2000). Assuming a 10% solution, approximately 446 gallons of wastewater (295 lb-ethanol x 1 gal/6.62 lb ÷ 0.10) will be generated annually. Based on information from NohBell Corporation, an allowance of $0.08 per gallon is applied for disposal costs.

Annual disposal costs = 446 gallons x $0.08/gallon = $36

Annual Costs

<table>
<thead>
<tr>
<th>Annual Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct Annual Cost (DC)</td>
</tr>
<tr>
<td>Operating Labor</td>
</tr>
<tr>
<td>Operator</td>
</tr>
<tr>
<td>Supervisor</td>
</tr>
<tr>
<td>Maintenance</td>
</tr>
<tr>
<td>Labor</td>
</tr>
<tr>
<td>Wastewater Disposal</td>
</tr>
<tr>
<td>10% Solution = 446 gal</td>
</tr>
<tr>
<td>Utility</td>
</tr>
<tr>
<td>Electricity</td>
</tr>
<tr>
<td>Total DC</td>
</tr>
<tr>
<td>Indirect Annual Cost (IC)</td>
</tr>
<tr>
<td>Overhead</td>
</tr>
<tr>
<td>Administrative</td>
</tr>
<tr>
<td>Property Taxes</td>
</tr>
<tr>
<td>Insurance</td>
</tr>
<tr>
<td>Annual Source Test</td>
</tr>
<tr>
<td>Total IC</td>
</tr>
<tr>
<td>Annual Cost (DC + IC)</td>
</tr>
</tbody>
</table>

Total Annual Cost = CIP System + Ductwork + Absorption System + Operating Costs
= $6,210 + $9,452 + $7,960 + $18,599
= $42,221

¹² As stated previously, the tanks are assumed to be filled in 1 hour and the largest tanks will be limited to 2 turnovers/year; therefore, 1 hr/turnover x 2 turnovers/yr = 2 hr/yr.
Annual Emission Reduction = Uncontrolled Emissions x 0.90
= 328 lb-VOC/year x 0.90 x ton/2,000 lb
= 0.15 tons-VOC/year

Cost Effectiveness = $42,221/year ÷ 0.15 tons-VOC/year
= $281,473/ton-VOC

The cost of VOC reductions of this control system is more than the threshold limit of $17,500/ton. Therefore, the absorption control system is not cost-effective for this installation.

Option 4 — Capture of VOCs and condensation or equivalent (overall capture & control efficiency of 70%)

The total capital investment costs and operating costs for condensation system used in this evaluation are based on the information given in District project N-1133659. Similar assumption in option 3 discussed above applies; the capital cost given in project N-1133659 will be adjusted by a factor of 0.4% for purposes of this analysis. In addition, no value will be given for the ethanol that is recovered from the condensation system since the recovered ethanol has not been conclusively demonstrated to have a value in practice and could actually result in additional costs for disposal.

Generally, when estimating costs from a known value, the rule of six-tenths is used to account for economy of scale. However, since the control device required for this project is smaller than the control device in the base project, the cost for the control device in this project will be scaled linearly. Scaling linearly results in lower capital cost and lower cost effectiveness. Therefore, the capital and installation costs provided in the cost estimate will be adjusted by a factor of 0.004 for purposes of this analysis.

The total capital cost provided in project N-1133659 is $1,901,272 for 4 units controlling 84,864 lbs-VOC. Therefore, the total capital cost for an equivalent system for this project is estimated to be $7,605.
<table>
<thead>
<tr>
<th>Cost Description</th>
<th>Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost of Refrigerated Condenser system (1 PAS Unit)</td>
<td>$7,605</td>
</tr>
</tbody>
</table>

The following cost data is taken from EPA Control Cost Manual, Sixth Edition (EPA/452/B-02-001).

Direct Costs (DC)

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Equipment Costs (Condenser) See Above</td>
<td>$7,605</td>
</tr>
<tr>
<td>Instrumentation (included)</td>
<td>-</td>
</tr>
<tr>
<td>Sales Tax (included)</td>
<td>-</td>
</tr>
<tr>
<td>Freight (included)</td>
<td>-</td>
</tr>
<tr>
<td>Purchased equipment cost</td>
<td>$7,605</td>
</tr>
<tr>
<td>Labor (estimated from project N-1133659)</td>
<td>$326</td>
</tr>
<tr>
<td>Installation Expense (estimated from project N-1133659)</td>
<td>$237</td>
</tr>
<tr>
<td>Subcontracts (estimated from project N-1133659)</td>
<td>$72</td>
</tr>
<tr>
<td>PLC/Programming</td>
<td>$45,000</td>
</tr>
<tr>
<td>Direct installation costs</td>
<td>$45,635</td>
</tr>
<tr>
<td>Total Direct Costs (TDC)</td>
<td>$53,240</td>
</tr>
</tbody>
</table>

Indirect Costs (IC)

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering (5% of TDC)</td>
<td>$792</td>
</tr>
<tr>
<td>Permits (Building Department) (Allowance)</td>
<td>$2,500</td>
</tr>
<tr>
<td>Initial Source Testing ($15,000/unit)</td>
<td>$15,000</td>
</tr>
<tr>
<td>Owner's Cost (Allowance)</td>
<td>$5,556</td>
</tr>
<tr>
<td>Total Indirect Cost</td>
<td>$23,848</td>
</tr>
<tr>
<td>Subtotal Capital Investment (SCI)</td>
<td>$77,088</td>
</tr>
<tr>
<td>Project Contingency (20% of SCI)</td>
<td>$15,418</td>
</tr>
<tr>
<td>Total Capital Investment (TCI) (DC + IC + Contingency)</td>
<td>$92,506</td>
</tr>
</tbody>
</table>

Annualized Capital Investment = Initial Capital Investment \times Amortization Factor

Annualized Capital Investment = $92,506 \times 0.163 = $15,078.

13 From project N-1133659 for 4 units, PLC & Programming = $180,000 (or $45,000/unit)
14 From project N-1133659 for 4 units, Permits = $10,000 (or $2,500/unit)
Annual Costs

<table>
<thead>
<tr>
<th>Annual Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct Annual Cost (DC)</td>
</tr>
<tr>
<td>Operating Labor</td>
</tr>
<tr>
<td>Operator</td>
</tr>
<tr>
<td>Supervisor</td>
</tr>
</tbody>
</table>

Maintenance

| Labor | 1% of TCI | $1,249 |

Chiller (Glycol)

328 lb/year (uncontrolled storage emissions) x 0.90 + 2000 270/ton EtOH 40

Utility

| Electricity | 0.102/kWh | $0 |

Total DC

$1,332$

<table>
<thead>
<tr>
<th>Indirect Annual Cost (IC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overhead</td>
</tr>
<tr>
<td>Administrative</td>
</tr>
<tr>
<td>Property Taxes</td>
</tr>
<tr>
<td>Insurance</td>
</tr>
<tr>
<td>Annual Source Test</td>
</tr>
</tbody>
</table>

Total IC

$20,771$

Annual Cost (DC + IC)

$22,103$

Total Annual Cost = CIP System + Ductwork + Condensation System + Operating Costs

$= 6,174 + 9,397 + 15,078 + 22,103$

$= 52,752$

Annual Emission Reduction = Uncontrolled Emissions x 0.70

$= 328$ lb-VOC/year x 0.70 x ton/2,000 lb

$= 0.11$ tons-VOC/year

Cost Effectiveness = $52,752$/year ÷ 0.11 tons-VOC/year

$= 479,564$/ton-VOC

The cost of VOC reductions of this control system is more than the threshold limit of $17,500$/ton. Therefore, the condensation control system is not cost-effective for this installation.

\(^{15}\) As stated previously, the tanks are assumed to be filled in 1 hour and the largest tanks will be limited to 2 turnovers/year; therefore, 1 hr/turnover x 2 turnovers/yr = 2 hr/yr.
Step 5 - Select BACT

All identified feasible options with control efficiencies higher than the option proposed by the facility have been shown to not be cost effective. The facility has proposed Option 1, insulated tank, pressure/vacuum valve set within 10% of the maximum allowable working pressure of the tank, "gas tight" tank operation and achieve and maintain a continuous storage temperature not exceeding 75°F within 60 days of completion of fermentation. These BACT requirements will be placed on the ATC as enforceable conditions.
Attachment I
Row A Diameter 0301

2.5 Row B Space Between 0301 and 0302

7 Row D Tank Diameter 0302

2.5 Row E Space Between 0302 and 0303

7 Row H Tank 0303 Diameter

7 2.5 9

Row F Space Between 0601 and 0602

9 Row G Tank Diameter 0602

9 Row G Tank Diameter 0602 Diameter

Pipe Length to Emission Control Equipment and CIP

35

Distance in Feet Columns

Alcohol Tanks
Pipe Rack Paths
Main Duct Routing

North
<table>
<thead>
<tr>
<th>Tank Farm Nominal Size</th>
<th>Connection to main duct</th>
<th>Main Duct Length</th>
<th>Gas Flow CFM</th>
<th>Duct Length Feet</th>
<th>Design Duct Velocity from Eichleay Feet/Second</th>
<th>Nominal Diameter in inches</th>
<th>Standard Size of pipe</th>
<th>Total Number of Tanks to Connect</th>
<th>Total Feet</th>
<th>Cost Per Foot from Eichleay</th>
<th>Cost</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,500</td>
<td>Tank Center</td>
<td>Main Duct</td>
<td>0.7</td>
<td>7.5</td>
<td>40</td>
<td>0.23</td>
<td>6.00</td>
<td>3</td>
<td>22.5</td>
<td>$61.00</td>
<td>$1,372.50</td>
<td>Connections From Tank to Main Duct</td>
</tr>
<tr>
<td>6,000</td>
<td>Tank Center</td>
<td>Main Duct</td>
<td>1.1</td>
<td>8.5</td>
<td>40</td>
<td>0.29</td>
<td>6.00</td>
<td>2</td>
<td>17</td>
<td>$61.00</td>
<td>$1,037.00</td>
<td>Connections From Tank to Main Duct</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.3</td>
<td>54</td>
<td>40</td>
<td>0.57</td>
<td>6.00</td>
<td>2</td>
<td>108</td>
<td>$61.00</td>
<td>$6,588.00</td>
<td></td>
</tr>
</tbody>
</table>

Eichleay’s value for a knock out drum was $46,300. Because these tanks are small the drum is envisioned to be about a 1000 gallons. A budget of $5,000 is used. The ducting is sized at 6 inch which is the smallest we have pricing for a 3 inch would be acceptable. As a result the ducting pipe size is reduced by 50%. We have reduced the duct spools and connection valve by the same amount. The 50% was chosen based on the ratio of the surface area of a 3 inch duct to a 6 inch duct. This reduces the amount of material and the linear length of weld to be run by about 50%.

1) One of the major concerns of a manifold duct system is inadvertently transferring fluids from one tank to another.

2) For this reason it is necessary to design into the system a positive disconnect of the ducting system when the tanks is not being filled. There are a number of ways this can be done, but for illustration purposes we took a very brief look at an automatic butterfly valve with a physical spool to disconnect the tank from the duct.

3) It should be pointed out that no design work has been done, and this should be considered a conceptual estimate.
Attachment II
Alcohol Tank

Description
The working volume of the tank is (in gallons)
The ideal gas law applies: PV = nRT
P equals the absolute atmosphere pressure
N equals the number of Lb.-moles of the vapor space gas
V = the volume
T = the absolute temperature in Degrees Rankine
R = Gas Law Constant

Density of Dry Air at 60 Deg F
Molecular Weight of O2
Percent of Air that is O2
Molecular Weight of Alcohol
Percent of Air that is N2
Molecular Weight of Alcohol
Molecular Weight of Water
Percent of Alcohol that is N2
Molecular Weight of Water

Weight of Water exiting tank from Tank 9.0 model
Weight of Alcohol exiting tank from Tank 4.0 model
Moles of water exiting the tank from Tanks 4.0 model
Moles of alcohol exiting the tank from Tanks 4.0 model
Total number of moles leaving the tank
Cubic feet of gas leaving the tank per ideal gas law

AMW (Yellow cells Information for the storage emissions tab)

<table>
<thead>
<tr>
<th>Units</th>
<th>5,710.70</th>
<th>3,454.62 Galons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atm x Cubic foot/Deg R x Lb.-mole</td>
<td>1.12</td>
<td>1.12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Daily Maximum Emissions for Tanks 4.0 Model in Pounds/Day of water and Alcohol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight of water exiting tank from Tank 4.0 model</td>
</tr>
<tr>
<td>Weight of alcohol exiting tank from Tank 4.0 model</td>
</tr>
<tr>
<td>Moles of alcohol exiting the tank from Tanks 4.0 model</td>
</tr>
<tr>
<td>Moles of water exiting the tank from Tanks 4.0 model</td>
</tr>
<tr>
<td>Total number of moles leaving the tank</td>
</tr>
<tr>
<td>Cubic feet of gas leaving the tank per ideal gas law</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gas Flow rate on Filling</th>
<th>95.18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas flow rate on filling</td>
<td>13.56</td>
</tr>
<tr>
<td>Gas composition on a molar bases</td>
<td>4.70</td>
</tr>
<tr>
<td>Gas composition on a weight bases</td>
<td>4.70</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Use duct size shown below for all storage main line for structural rigidity and expansion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duct speed by blow-in (feet per second) for the Main Diameter in inches</td>
</tr>
<tr>
<td>Duct Diameter for the Main</td>
</tr>
<tr>
<td>Diameter expansion</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

1) The gas flow rate (shown in the brown cells) is for one tank at a maximum fill rate. One turn is the filling of the tank and emptying the tank. Typically, it is assumed that the tank is turned once during a day, however, once the proposed tanks are significantly smaller than typical tanks, it will be assumed that the tanks can be filled in 1 hour.

2) It is assumed that the emission control equipment would only be needed in the filling process. For the purpose of estimating gas flow from the tanks, it is assumed the five tanks could be filling at one time. The daily emissions calculated in the "Storage Emission" tab would not be exceeded for each of five tanks. Due to the small size of the tanks and the relative high annual turnover rate, a single tank could be pumped faster than that shown. However, we think the assumption of all tanks filling at once at the pump rates shown provides an adequate gas flow rate to estimate the emission control equipment size. The estimated flow rate of the pumps is shown below. A typical wine pumps runs at about 100 TDH and is about 60% to 70% efficient, and if pumping distances are short may move down the curve to pump more at a lower TDH.

3) It is impossible to tell which tanks the pumps are connected to at a given time. For these reasons on storage tanks only, the main duct size will be set at a single size. There will be only one main duct since we believe the pumping could be stopped while the main duct is cleaned. We have not operated ducting systems before and do not know how much time or what frequency of cleaning will be required.

1) Assume Ideal Gas at Atm pressure

- Density at 300 Deg K of Air KG/Cubic Meter
- Density at 60 Deg F in Cubic Foot
- Density of Air at 280 Deg F of Air KG/Cubic Meter
- Density of Air at 60 Deg F in Cubic Feet
- Density of Water at 60 Deg F in Cubic Feet
- Density of Water at 0 Deg C in Cubic Feet

<table>
<thead>
<tr>
<th>Density at 60 Deg F in Cubic Foot</th>
<th>60.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density at 60 Deg F in Cubic Meter</td>
<td>60.00</td>
</tr>
<tr>
<td>Density at 300 Deg K of Air KG/Cubic Meter</td>
<td>60.00</td>
</tr>
<tr>
<td>Density of Water at 60 Deg F in Cubic Feet</td>
<td>288.70</td>
</tr>
<tr>
<td>Density of Water at 0 Deg C in Cubic Feet</td>
<td>288.70</td>
</tr>
<tr>
<td>Density of Water at 30 Deg F in Cubic Feet</td>
<td>288.70</td>
</tr>
<tr>
<td>Density of Water at 60 Deg F in Cubic Feet</td>
<td>288.70</td>
</tr>
</tbody>
</table>
Distilled Spirits Storage Tank

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained In the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>Insulation or Equivalent**, Pressure Vacuum Relief Valve (PVRV) set within 10% of the maximum allowable working pressure of the tank; "gas-tight" tank operation</td>
<td>1) Capture of VOCs and thermal or catalytic oxidation or equivalent (98% control); 2) Capture of VOCs and carbon adsorption or equivalent (95% control); 3) Capture of VOCs and adsorption or equivalent (90% control); 4) Refrigerated Storage (70% control)</td>
<td></td>
</tr>
</tbody>
</table>

** Tank may be insulated or stored indoors (in a completely enclosed building except for vents, doors and other essential openings) to limit exposure to diurnal temperature variations.

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a state implementation plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Top Down BACT Analysis for Distilled Spirits Storage VOC Emissions

Step 1 - Identify All Possible Control Technologies

The SJVUAPCD BACT Clearinghouse guideline 5.4.15, identifies achieved in practice BACT for distilled spirits storage tanks as follows:

1) Insulation or Equivalent**, Pressure Vacuum Relief Valve (PVRV) set within 10% of the maximum allowable working pressure of the tank; "gas-tight" tank operation.

**Tanks may be insulated or stored indoors (in a completely enclosed building, except for vents, doors and other essential openings) to limit exposure to diurnal temperature variations.

The SJVUAPCD BACT Clearinghouse guideline 5.4.15, 4th quarter 2013, identifies technologically feasible BACT for distilled spirits storage tanks as follows:

2) Refrigerated storage (70% control)
3) Capture of VOCs and absorption or equivalent (90% control)
4) Capture of VOCs and carbon adsorption or equivalent (95% control)
5) Capture of VOCs and thermal or catalytic oxidation or equivalent (98% control)

Step 2 - Eliminate Technologically Infeasible Options

None of the above listed technologies are technologically infeasible.

Step 3 - Rank Remaining Control Technologies by Control Effectiveness

<table>
<thead>
<tr>
<th>Rank</th>
<th>Control</th>
<th>Overall Capture and Control Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Capture of VOCs and thermal or catalytic oxidation or equivalent</td>
<td>98%</td>
</tr>
<tr>
<td>2</td>
<td>Capture of VOCs and carbon adsorption or equivalent</td>
<td>95%</td>
</tr>
<tr>
<td>3</td>
<td>Capture of VOCs and absorption or equivalent</td>
<td>90%</td>
</tr>
<tr>
<td>4</td>
<td>Capture of VOCs and refrigerated storage</td>
<td>70%</td>
</tr>
<tr>
<td>5</td>
<td>Insulation or Equivalent, Pressure Vacuum Relief Valve (PVRV) set within 10% of the maximum allowable working pressure of the tank; "gas-tight" tank operation.</td>
<td>Baseline (Achieved-in-Practice)</td>
</tr>
</tbody>
</table>
Step 4 - Cost Effectiveness Analysis

A cost-effective analysis is performed for control technologies which is more effective than meeting the requirements of option 1 (achieved-in-practice BACT), as proposed by the facility.

Collection System Capital Investment (based on ductwork):
A common feature of all technically feasible options is that they require installation of a collection system for delivering the VOCs from the tanks to the common control device.

The following cost information was provided by the facility, and the bases of the cost information include:

- The costs for the ductwork and the required clean-in-place system are based on information from the 2005 Eichleay Study. The 2005 Eichleay Study was used in development of District Rule 4694 Wine Fermentation and Storage Tanks and includes substantial information on the costs and details of the potential application of VOC controls to wineries and addresses many of the technical issues of the general site specific factors for wineries.

- The collection system consists of stainless steel place ductwork (stainless steel is required due to food grade product status) with isolation valving, connecting the tanks to a common manifold system which ducts the combined vent to the common control device. The cost of dampers and isolation valving, installed in the ductwork, will be included in the cost estimate.

- A minimum duct size is established at six inches diameter at each tank to provide adequate strength for spanning between supports.

- One of the major concerns of a manifold duct system is microorganisms spoiling the product, and transferring from one tank to another. It is possible to completely ruin a tank of one special type of highest proof distilled spirit if a few hundred gallons of medium grade distilled spirit were back fed through the duct. It is necessary to design into the system a positive disconnect of the ducting system when the tanks are not being filled. There are a number of ways this can be done. In this case, an automatic butterfly valve with a physical spool to disconnect the tank from the duct will be utilized.

Per applicant, the overall estimated capital investment for the ductwork, knockout drums, and ducting isolation components is $22,061 for this common collection system. See detail ductwork layout and cost breakdown in Attachment I of this analysis.

The following cost data is taken from EPA Control Cost Manual, Sixth Edition (EPA/452/B 02-001)
Ductwork

<table>
<thead>
<tr>
<th>Cost Description</th>
<th>Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duct Estimate from Eichleay Study 2005 Data</td>
<td>$22,061</td>
</tr>
<tr>
<td>Adjusting factor from 2005 dollars to 2015 dollars (2.75% inflation/year)</td>
<td>1.38</td>
</tr>
<tr>
<td>Inflation adjusted duct cost</td>
<td>$30,444</td>
</tr>
</tbody>
</table>

The following cost data is taken from EPA Control Cost Manual, Sixth Edition (EPA/452/B-02-001).

Direct Costs (DC)

<table>
<thead>
<tr>
<th>Cost Description</th>
<th>Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Equipment Costs (Ductwork) See Above</td>
<td>$30,444</td>
</tr>
<tr>
<td>Instrumentation 10%</td>
<td>$3,044</td>
</tr>
<tr>
<td>Sales Tax 3.3125%</td>
<td>$1,008</td>
</tr>
<tr>
<td>Freight 5%</td>
<td>$1,522</td>
</tr>
<tr>
<td>Purchased equipment cost</td>
<td>$36,018</td>
</tr>
<tr>
<td>Foundations & supports 8%</td>
<td>$2,881</td>
</tr>
<tr>
<td>Handling & erection 14%</td>
<td>$5,043</td>
</tr>
<tr>
<td>Electrical 4%</td>
<td>$1,441</td>
</tr>
<tr>
<td>Piping 2%</td>
<td>$720</td>
</tr>
<tr>
<td>Painting 1%</td>
<td>$360</td>
</tr>
<tr>
<td>Insulation 1%</td>
<td>$360</td>
</tr>
<tr>
<td>Direct installation costs</td>
<td>$10,805</td>
</tr>
<tr>
<td>Total Direct Costs</td>
<td>$46,823</td>
</tr>
</tbody>
</table>

Indirect Costs (IC)

<table>
<thead>
<tr>
<th>Cost Description</th>
<th>Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering 10%</td>
<td>$3,602</td>
</tr>
<tr>
<td>Construction and field expenses 5%</td>
<td>$1,801</td>
</tr>
<tr>
<td>Contractor fees 10%</td>
<td>$3,602</td>
</tr>
<tr>
<td>Start-up 2%</td>
<td>$720</td>
</tr>
<tr>
<td>Performance test 1%</td>
<td>$360</td>
</tr>
<tr>
<td>Contingencies 3%</td>
<td>$1,081</td>
</tr>
<tr>
<td>Total Indirect Costs</td>
<td>$11,166</td>
</tr>
</tbody>
</table>

Total Capital Investment (TCI) (DC + IC)

<table>
<thead>
<tr>
<th>Cost Description</th>
<th>Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Capital Investment (TCI) (DC + IC)</td>
<td>$57,989</td>
</tr>
</tbody>
</table>

Annualized Capital Investment = Initial Capital Investment x Amortization Factor

Amortization Factor = \(\left[\frac{0.1(1.1)^{10}}{(1.1)^{10} - 1} \right] \) = 0.163 per District policy, amortizing over 10 years at 10%

Therefore,

Annualized Capital Investment for Ductwork = $57,989 x 0.163 = $9,452

\(^{18}\) Pollution control equipment is qualified for CA tax partial exemption, and the exemption rate is 4.1875%, so the reduced sales tax rate is equal 3.3125% (7.500% - 4.1875%), http://www.boe.ca.gov/sutax/manufacturing_exemptions.htm#Purchasers
Clean-In-Place (CIP) System
A ducting system on a tank farm must have this system to maintain sanitation and quality of the product. The cost of operation of the CIP system has not been estimated. Operation of a CIP system, using typical cleaning agents, will raise disposal and wastewater treatment costs.

<table>
<thead>
<tr>
<th>Clean-In-Place (CIP) System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost Description</td>
</tr>
<tr>
<td>Current cost of CIP system</td>
</tr>
</tbody>
</table>

The following cost data is taken from EPA Control Cost Manual, Sixth Edition (EPA/452/B-02-001).

Direct Costs (DC)

<table>
<thead>
<tr>
<th>Cost Description</th>
<th>Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Equipment Costs (CIP System) See Above</td>
<td>$20,000</td>
</tr>
<tr>
<td>Instrumentation 10%</td>
<td>$2,000</td>
</tr>
<tr>
<td>Sales Tax 3.3125%</td>
<td>$663</td>
</tr>
<tr>
<td>Freight 5%</td>
<td>$1,000</td>
</tr>
<tr>
<td>Purchased equipment cost</td>
<td>$23,663</td>
</tr>
<tr>
<td>Foundations & supports 8%</td>
<td>$1,893</td>
</tr>
<tr>
<td>Handling & erection 14%</td>
<td>$3,313</td>
</tr>
<tr>
<td>Electrical 4%</td>
<td>$947</td>
</tr>
<tr>
<td>Piping 2%</td>
<td>$473</td>
</tr>
<tr>
<td>Painting 1%</td>
<td>$237</td>
</tr>
<tr>
<td>Insulation 1%</td>
<td>$237</td>
</tr>
<tr>
<td>Direct installation costs</td>
<td>$7,100</td>
</tr>
<tr>
<td>Total Direct Costs</td>
<td>$30,763</td>
</tr>
</tbody>
</table>

Indirect Costs (IC)

<table>
<thead>
<tr>
<th>Cost Description</th>
<th>Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering 10%</td>
<td>$2,366</td>
</tr>
<tr>
<td>Construction and field expenses 5%</td>
<td>$1,183</td>
</tr>
<tr>
<td>Contractor fees 10%</td>
<td>$2,366</td>
</tr>
<tr>
<td>Start-up 2%</td>
<td>$473</td>
</tr>
<tr>
<td>Performance test 1%</td>
<td>$237</td>
</tr>
<tr>
<td>Contingencies 3%</td>
<td>$710</td>
</tr>
<tr>
<td>Total Indirect Costs</td>
<td>$7,335</td>
</tr>
<tr>
<td>Total Capital Investment (TCI) (DC + IC)</td>
<td>$38,098</td>
</tr>
</tbody>
</table>

Annualized Capital Investment = Initial Capital Investment x Amortization Factor

Annualized Capital Investment for one CIP System = $38,098 x 0.163 = $6,210

17 An Allowance of $200,000 for a CIP system should be included in the evaluation for a standard tank farm. A ducting system on a tank farm must have that kind of system to maintain sanitation and quality of the product. Because these tanks are storage only, very small, only 5 tanks in the project, and will have 95% alcohol content most of the time; the estimate was reduced to $20,000.
Option 1 - Capture of VOCs & thermal/catalytic oxidation or equivalent (overall capture & control efficiency of 98%)

The total capital investment cost and installation costs including freight for a Regenerative Thermal Oxidizer (RTO) used in this evaluation are based on the cost information provided by Adwest Technologies, Inc on September 24, 2014 for an RTO handling 537 scfm, which was the smallest system they could provide. The potential flow rate from the tanks proposed in this project is 52 scfm (see Attachment II), equivalent to approximately 10.3% of 537 scfm.

Generally, when estimating costs from a known value, the rule of six-tenths is used to account for economy of scale. However, since the control device required for this project is smaller than the control device in the base project, the cost for the control device in this project will be scaled linearly. Scaling linearly results in lower capital cost and lower cost effectiveness. Therefore, the capital and installation costs provided in the cost estimate will be adjusted by a factor of 0.1 for purposes of this analysis.

<table>
<thead>
<tr>
<th>Thermal or Catalytic Oxidation</th>
<th>Cost Description</th>
<th>Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Size adjusted Regenerative Thermal Oxidizer cost [145,500 x (0.1)]</td>
<td>$14,550</td>
</tr>
</tbody>
</table>

The following cost data is taken from EPA Control Cost Manual, Sixth Edition (EPA/452/B-02-001).

<table>
<thead>
<tr>
<th>Direct Costs (DC)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Equipment Costs (Regenerative Thermal Oxidizer System)</td>
<td>See Above $14,550</td>
</tr>
<tr>
<td>Freight and Startup [22,900 x (0.1)]</td>
<td>$2,290</td>
</tr>
<tr>
<td>Sales Tax 3.3125%</td>
<td>$482</td>
</tr>
<tr>
<td>Purchased equipment cost</td>
<td>$17,322</td>
</tr>
<tr>
<td>Foundations & supports 8%</td>
<td>$1,386</td>
</tr>
<tr>
<td>Handling & erection 14%</td>
<td>$2,425</td>
</tr>
<tr>
<td>Electrical 4%</td>
<td>$693</td>
</tr>
<tr>
<td>Piping 2%</td>
<td>$346</td>
</tr>
<tr>
<td>Painting 1%</td>
<td>$173</td>
</tr>
<tr>
<td>Insulation 1%</td>
<td>$173</td>
</tr>
<tr>
<td>Direct installation costs</td>
<td>$5,196</td>
</tr>
<tr>
<td>Total Direct Costs</td>
<td>$22,518</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Indirect Costs (IC)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering 10%</td>
<td>$1,732</td>
</tr>
<tr>
<td>Construction and field expenses 5%</td>
<td>$866</td>
</tr>
<tr>
<td>Contractor fees 10%</td>
<td>$1,732</td>
</tr>
<tr>
<td>Start-up (included above)</td>
<td>-</td>
</tr>
<tr>
<td>Performance test 1%</td>
<td>$173</td>
</tr>
<tr>
<td>Contingencies 3%</td>
<td>$520</td>
</tr>
<tr>
<td>Total Indirect Costs</td>
<td>$5,023</td>
</tr>
<tr>
<td>Total Capital Investment (TCI) (DC + IC)</td>
<td>$27,541</td>
</tr>
</tbody>
</table>
Annualized Capital Investment = Initial Capital Investment x Amortization Factor

Annualized Capital Investment for two CIP Systems = $27,541 x 0.163 = $4,489

Operation and Maintenance Costs

The Direct annual costs include labor (operating, supervisory, and maintenance), maintenance materials, electricity, and fuel.

Heat of Combustion for waste gas stream -dh(c):

-heat of combustion -dHc = 20,276 Btu/lb
-Daily VOC emissions rate = 340.2 lb/day
-Blower flow rate = 52 scfm
= 74,880 ft³/day

-dh(c) = 13.7 lb/day x 20,276 Btu/lb / 74,880 ft³/day
= 3.71 Btu/ft³

Assuming the waste gas is principally air, with a molecular weight of 28.97 and a corresponding density of 0.0739 lb/scf, the heat of combustion per pound of incoming waste gas is:

-dh(c) = 3.71 Btu/ft³ / 0.0739 lb/ft³
= 50.2 Btu/lb

Fuel Flow Requirement

\[
Q_{\text{fuel}} = \frac{P_w \cdot Q_w \cdot (C_p \cdot (1.1T_f - T_w - 0.1T_r) - t)}{P(\text{ef}) \cdot [-dH(m) - 1.1 \cdot C_p \cdot (T_f - T_r)]}
\]

Where

- \(P_w = 0.0739 \text{ lb/ft}^3 \)
- \(C_p = 0.255 \text{ Btu/lb} \cdot ^\circ F \)
- \(Q_w = 52 \text{ scfm} \)
- \(-dH(m) = 21,502 \text{ Btu/lb for methane} \)
- \(T_r = 77^\circ F \) assume ambient conditions
- \(P(\text{ef}) = 0.0408 \text{ lb/ft}^3 \) m, methane at 77°F, 1 atm
- \(T_f = 1600^\circ F \)
- \(T_w = 1150^\circ F \)
- \(-dH(c) = 50.2 \text{ Btu/lb} \)

\[
Q = 0.0739 \cdot 52 \cdot (0.255 \cdot (1.1 \cdot 1600 - 1150 - 0.1 \cdot 77) - 50.2) \\
0.0408 \cdot [21,502 - 1.1 \cdot 0.255 \cdot (1600 - 77)] \\
= 397 + 861 = 0.5 \text{ ft}^3/\text{min}
\]
Fuel Costs

The cost for natural gas shall be based upon the average price of natural gas sold to "Commercial Consumers" in California for the years 2011, 2012 and 2013. $^{18}

2013 = $7.81/thousand ft3 total monthly average
2012 = $8.29/thousand ft3 total monthly average
2011 = $7.05/thousand ft3 total monthly average
Average for three years = $7.717/thousand ft3 total monthly average

Fuel Cost = 0.5 cfm x 60 min/day x 365 day/year x $7.717/1000 ft^3$
= $85/year

Electricity Requirement

Power$_{fan} = 1.17*10^{-4} Q_w * \Delta P \over \epsilon$

Where
\Delta P = Pressure drop Across system = 10 in. H$_2$O
\epsilon = Efficiency for fan and motor = 0.6
Q_w = 6,200 scfm

Power$_{fan} = 1.17*10^{-4} * 52 \text{ cfm} * 1.5 * 10 \text{ in. H}_2\text{O} \over 0.60 * 0.90$
= 0.17 kW

Electricity Costs

Average cost of electricity to commercial users in California 19:
2012 = $0.1023
2011 = $0.1012
AVG = $0.102

Electricity Cost = 0.17 kW x 1 hours/day x 365 days/year x $0.102/kWh = $6/year

Total Operating and Maintenance Costs

Annual Costs (Based on: EPA Air Pollution Control Cost Manual, Sixth Edition (January 2002), Section 3.2: VOC Destruction Controls, Chapter 2: Incinerators (September 2000), Table 2.10 - Annual Costs for Thermal and Catalytic Incinerators Example Problem. United States Environmental Protection Agency Office of Air Quality Planning and Standards. Research Triangle Park, North Carolina 27711. EPA/452/B-02-001) 20

18 Energy Information Administration/Natural Gas; Average Price of Natural Gas Sold to Commercial Consumers by State, 2011 - 2013
19 Energy Information Administration/Electric Power; Average Retail Price of Electricity to Ultimate Customers by End-Use Sector, by State, 2011 - 2012
20 http://epa.gov/tnn/calcdir1/c3-2ch2.pdf
Annual Costs

Direct Annual Cost (DC)

<table>
<thead>
<tr>
<th>Labor Category</th>
<th>Description</th>
<th>Direct Cost Calculation</th>
<th>Direct Annual Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Labor</td>
<td>Operator</td>
<td>0.5 hr/shift x $18.5/hr x 0.5 hr/day x 2 days/yr</td>
<td>$19</td>
</tr>
<tr>
<td></td>
<td>Supervisor</td>
<td>15% of operator</td>
<td>$1</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Labor</td>
<td>0.5 hr/shift x $18.5/hr x 0.5 hr/day x 2 days/yr</td>
<td>$19</td>
</tr>
<tr>
<td></td>
<td>Maintenance</td>
<td>100% of labor</td>
<td>$19</td>
</tr>
</tbody>
</table>

Utility

- Natural Gas: $85
- Electricity: $6

Total DC = $632

Indirect Annual Cost (IC)

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
<th>Indirect Cost Calculation</th>
<th>Indirect Annual Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overhead</td>
<td>60% of Labor Cost</td>
<td>0.6 x ($19 + $1 + $19)</td>
<td>$23</td>
</tr>
<tr>
<td>Administrative</td>
<td></td>
<td>2% TCI</td>
<td>$551</td>
</tr>
<tr>
<td>Property Taxes</td>
<td></td>
<td>1% TCI</td>
<td>$275</td>
</tr>
<tr>
<td>Insurance</td>
<td></td>
<td>1% TCI</td>
<td>$275</td>
</tr>
</tbody>
</table>

Total IC = $1,124

Annual Cost (DC + IC) = $1,905

Total Annual Cost = (Ductwork + CIP System) + RTO + Annual Costs

= $(9,452 + 6,210) + $4,489 + $1,905

= $22,056

Annual Emission Reduction = Uncontrolled Emissions x 0.98

= 328 lb-VOC/year x 0.98 x ton/2,000 lb

= 0.16 tons-VOC/year

Cost Effectiveness = $22,056/year ÷ 0.16 tons-VOC/year

= $137,850/ton-VOC

The cost of VOC reductions for this control system is more than the threshold limit of $17,500/ton. Therefore, the capture and oxidation control system is not cost-effective for this installation.

21 As stated in Attachment II, the tanks are assumed to be filled in 1 hour and the largest tanks will be limited to 2 turnovers/year; therefore, 1 hr/turnover x 2 turnovers/yr = 2 hr/yr or 2 days/yr.
Option 2 - Capture of VOCs and carbon adsorption or equivalent (overall capture & control efficiency of 95%)

Carbon containment hardware including an inline filter, blower, exhaust silencer and air to air heat exchanger for a 50 cfm system was quoted as $20,000 to $25,000 by David Drewelow of Drewelow Remediation Equipment, Inc on February 3, 2015. To be conservative, the District will use $20,000 as the cost for the carbon containment hardware.

The carbon bed operated with steam to regenerate the bed produces a water alcohol mixture. The waste stream or disposal costs have not been analyzed in this project.

Carbon Capital Cost

Annual Emission Reduction = Storage Emissions x 0.86
= 328 lb-VOC/year x 0.86
= 282 lb-VOC/year

Assume a working bed capacity of 20% for carbon (weight of vapor per weight of carbon)

Carbon required = 282 lbs-VOC/year x 1/0.20
= 1,410 lb carbon

David Drewelow also provided a cost of $1.25/lb of carbon which does not include any delivery or servicing fees. Therefore, carbon capital cost = $1.25/lb x 1,410 lb carbon = $1,763
Carbon Adsorption

<table>
<thead>
<tr>
<th>Cost Description</th>
<th>Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon Adsorption cost</td>
<td>$20,000</td>
</tr>
<tr>
<td>Water alcohol tank cost</td>
<td>$5,000</td>
</tr>
<tr>
<td>Carbon Adsorption + water alcohol tank cost</td>
<td>$25,000</td>
</tr>
<tr>
<td>Carbon Capital Cost (see above)</td>
<td>$1,763</td>
</tr>
</tbody>
</table>

The following cost data is taken from EPA Control Cost Manual, Sixth Edition (EPA/452/B-02-001).

Direct Costs (DC)

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Equipment Costs (Carbon Adsorption System + Carbon) See Above</td>
<td>$26,763</td>
</tr>
<tr>
<td>Instrumentation 10%</td>
<td>$2,676</td>
</tr>
<tr>
<td>Sales Tax 3.3125%</td>
<td>$703</td>
</tr>
<tr>
<td>Freight 5%</td>
<td>$1,338</td>
</tr>
<tr>
<td>Purchased equipment cost</td>
<td>$31,480</td>
</tr>
<tr>
<td>Foundations & supports 8%</td>
<td>$2,518</td>
</tr>
<tr>
<td>Handling & erection 14%</td>
<td>$4,407</td>
</tr>
<tr>
<td>Electrical 4%</td>
<td>$1,259</td>
</tr>
<tr>
<td>Piping 2%</td>
<td>$630</td>
</tr>
<tr>
<td>Painting 1%</td>
<td>$315</td>
</tr>
<tr>
<td>Insulation 1%</td>
<td>$315</td>
</tr>
<tr>
<td>Direct installation costs</td>
<td>$9,444</td>
</tr>
<tr>
<td>Total Direct Costs</td>
<td>$40,924</td>
</tr>
</tbody>
</table>

Indirect Costs (IC)

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering 10%</td>
<td>$3,148</td>
</tr>
<tr>
<td>Construction and field expenses 5%</td>
<td>$1,574</td>
</tr>
<tr>
<td>Contractor fees 10%</td>
<td>$3,148</td>
</tr>
<tr>
<td>Start-up 2%</td>
<td>$630</td>
</tr>
<tr>
<td>Performance test 1%</td>
<td>$315</td>
</tr>
<tr>
<td>Contingencies 3%</td>
<td>$944</td>
</tr>
<tr>
<td>Total Indirect Costs</td>
<td>$9,759</td>
</tr>
<tr>
<td>Total Capital Investment (TCI) (DC + IC)</td>
<td>$50,683</td>
</tr>
</tbody>
</table>

Annualized Capital Investment = Initial Capital Investment x Amortization Factor

Amortization Factor = \[\frac{0.1(1.1)^{10}}{(1.1)^{10} - 1} \] = 0.163 per District policy, amortizing over 10 years at 10%

Therefore,

Annualized Capital Investment = $50,683 x 0.163 = $8,261

Total Annual Cost = Carbon Adsorption System + Ductwork + CIP System
= $8,261 + $9,452 + $6,210
= $23,923

Annual Emission Reduction = Uncontrolled Emissions x 0.86
= 328 lb-VOC/year x 0.86 x ton/2,000 lb
= 0.14 tons-VOC/year

Cost Effectiveness = $23,923/year ÷ 0.14 tons-VOC/year
= $170,879/ton-VOC

The cost of VOC reductions for this control system is more than the threshold limit of $17,500/ton. Therefore, the capture and carbon adsorption control system is not cost-effective for this installation.

Option 3 - Capture of VOCs and absorption or equivalent (overall capture & control efficiency of 90%)

The total capital investment costs and operating costs for an absorption system used in this evaluation are based on the information given in District project N-1133659. The scrubber under project N-1133659 was evaluated for the control of 84,864 pounds of VOC emissions. The potential VOC emissions from this project are 328 pounds, equivalent to approximately 0.4% of the emissions evaluated for control under project N-1133659.

Generally, when estimating costs from a known value, the rule of six-tenths is used to account for economy of scale. However, since the control device required for this project is smaller than the control device in the base project, the cost for the control device in this project will be scaled linearly. Scaling linearly results in lower capital cost and lower cost effectiveness. Therefore, the capital and installation costs provided in the cost estimate will be adjusted by a factor of 0.004 for purposes of this analysis.

Capital Cost for each Water Scrubber unit is as follows: Reactor and Portable Pumping Skids are $60,000 and $7,500 respectively. The total capital cost for all units is $1,215,000 controlling 84,864 lbs-VOC. Therefore, the total capital cost for an equivalent system for this project is estimated to be $4,860.
Scrubber

<table>
<thead>
<tr>
<th>Cost Description</th>
<th>Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refrigerated Scrubber System</td>
<td>$4,860</td>
</tr>
</tbody>
</table>

The following cost data is taken from EPA Control Cost Manual, Sixth Edition (EPA/452/B-02-001).

Direct Costs (DC)

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Equipment Costs (Scrubber System) See Above</td>
<td>$4,860</td>
</tr>
<tr>
<td>Instrumentation ($2,000 per unit, assume 1 unit)</td>
<td>$2,000</td>
</tr>
<tr>
<td>Sales Tax 3.3125%</td>
<td>$181</td>
</tr>
<tr>
<td>Freight (included)</td>
<td>-</td>
</tr>
<tr>
<td>Purchased equipment cost</td>
<td>$7,021</td>
</tr>
<tr>
<td>Foundations & supports (not required)</td>
<td>-</td>
</tr>
<tr>
<td>Handling & erection 2%</td>
<td>$140</td>
</tr>
<tr>
<td>Electrical 1%</td>
<td>$70</td>
</tr>
<tr>
<td>Piping 1%</td>
<td>$70</td>
</tr>
<tr>
<td>Painting (not required)</td>
<td>-</td>
</tr>
<tr>
<td>Insulation (not required)</td>
<td>-</td>
</tr>
<tr>
<td>PLC & Programming</td>
<td>$10,000²²</td>
</tr>
<tr>
<td>Recovered Ethanol Storage Tank (installed)</td>
<td>$5,000</td>
</tr>
<tr>
<td>Direct installation costs</td>
<td>$15,280</td>
</tr>
<tr>
<td>Total Direct Costs (TDC)</td>
<td>$22,301</td>
</tr>
</tbody>
</table>

Indirect Costs (IC)

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering (5% of TDC)</td>
<td>$1,115</td>
</tr>
<tr>
<td>Construction and field expenses (2% of TDC)</td>
<td>$446</td>
</tr>
<tr>
<td>Permits (Building Department) (Allowance)</td>
<td>$10,000</td>
</tr>
<tr>
<td>Contractor fees (2% of TDC)</td>
<td>$446</td>
</tr>
<tr>
<td>Start-up (1% of TDC)</td>
<td>$223</td>
</tr>
<tr>
<td>Source Testing (1 unit x $15,000/unit)</td>
<td>$15,000</td>
</tr>
<tr>
<td>Owner's Cost (Allowance)</td>
<td>$5,556²³</td>
</tr>
<tr>
<td>Total Indirect Costs</td>
<td>$32,786</td>
</tr>
<tr>
<td>Subtotal Capital Investment (SCI)</td>
<td>$55,087</td>
</tr>
<tr>
<td>Project Contingency (20% of SCI)</td>
<td>$11,017</td>
</tr>
<tr>
<td>Total Capital Investment (TCI) (DC + IC)</td>
<td>$66,104</td>
</tr>
</tbody>
</table>

²² From project N-1133659 for 18 units, PLC & Programming = $180,000 (or $10,000/unit)
²³ From project N-1133659 for 18 units, Owner's Cost = $100,000 (or $5,556/unit)
Annualized Capital Investment = Initial Capital Investment \times \text{Amortization Factor}

Annualized Capital Investment = 66,104 \times 0.163 = 10,775.

Wastewater Disposal Costs

The water scrubber will generate ethanol-laden wastewater containing 0.15 tons (295 lbs) of ethanol annually (328 lb/year (uncontrolled emissions) \times 0.90 + 2000). Assuming a 10% solution, approximately 446 gallons of wastewater (295 lb-ethanol \times 1 \text{gal/6.62 lb \times 0.10}) will be generated annually. Based on information from NohBell Corporation, an allowance of $0.08 per gallon is applied for disposal costs.

Annual disposal costs = 446 gallons \times $0.08/gallon = $36

Annual Costs

<table>
<thead>
<tr>
<th>Annual Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct Annual Cost (DC)</td>
</tr>
<tr>
<td>Operating Labor</td>
</tr>
<tr>
<td>Operator</td>
</tr>
<tr>
<td>Supervisor</td>
</tr>
<tr>
<td>Maintenance</td>
</tr>
<tr>
<td>Labor</td>
</tr>
<tr>
<td>Wastewater Disposal</td>
</tr>
<tr>
<td>10% Solution = 446 gal</td>
</tr>
<tr>
<td>Utility</td>
</tr>
<tr>
<td>Electricity</td>
</tr>
<tr>
<td>Total DC</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Indirect Annual Cost (IC)</td>
</tr>
<tr>
<td>Overhead</td>
</tr>
<tr>
<td>Administrative</td>
</tr>
<tr>
<td>Property Taxes</td>
</tr>
<tr>
<td>Insurance</td>
</tr>
<tr>
<td>Annual Source Test</td>
</tr>
<tr>
<td>Total IC</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Annual Cost (DC + IC)</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Total Annual Cost = CIP System + Ductwork + Absorption System + Operating Costs

= 6,210 + 9,452 + 7,960 + 18,599

= 42,221

24 As stated previously, the tanks are assumed to be filled in 1 hour and the largest tanks will be limited to 2 turnovers/year; therefore, 1 hr/turnover \times 2 turnovers/yr = 2 hr/yr.
Annual Emission Reduction = Uncontrolled Emissions x 0.90
= 328 lb-VOC/year x 0.90 x ton/2,000 lb
= 0.15 tons-VOC/year

Cost Effectiveness = $42,221/year ÷ 0.15 tons-VOC/year
= $281,473/ton-VOC

The cost of VOC reductions of this control system is more than the threshold limit of $17,500/ton. Therefore, the absorption control system is not cost-effective for this installation.

Option 4 – Refrigerated Storage at 40 °F (overall capture & control efficiency of 70%)

Design Basis

- A common refrigeration system will be installed for the five tanks.
- The refrigeration system will be a packaged single-stage vapor-compression system.
- Minimum refrigeration capacity will allow cooling the twelve tanks from 75 °F to 40 °F once the product enters the tanks. As shown in attachment II, the filling rate for these tanks is assumed to be 363 gpm for filling the tanks in 1 hour each simultaneously.

Based on a specific heat capacity of 1.0 Btu/lb-°F and cooling one tank from 75 °F to 40 °F, the capacity required for the refrigeration system would be:

\[
\text{Refrigeration Capacity} = 363 \text{ gal/min} \times 8.34 \text{ lb/gal} \times 1.0 \text{ Btu/lb-°F} \times (75 \text{ °F} - 40 \text{ °F}) \times 60 \text{ min/hr} \times 1 \text{ ton-hr refrigeration/12,000 Btu}
\]

\[
\text{Refrigeration Capacity} = 529.8 \text{ tons}
\]

Capital Cost

The EPA Air Pollution Control Manual, Section 3, Chapter 2, Table 2.5, provides costs for single stage vapor compression systems up to 100 tons capacity at a condensation temperature of 40 °F. Conservatively, using the purchase price for a 100 ton unit yields:

Refrigeration System Cost = $140,000

Annualized Capital Investment = Initial Capital Investment x Amortization Factor

\[
\text{Amortization Factor} = \frac{0.1(1.1)^{10}}{(1.1)^{10} - 1} = 0.163 \text{ per District policy, amortizing over 10 years at 10%}
\]

Therefore,

Annualized Capital Investment = $140,000 x 0.163 = $22,820

Annual Emission Reduction = Uncontrolled Emissions x 0.70
\[\begin{align*}
&= 328 \text{ lb-VOC/year} \times 0.70 \times \text{ton/2,000 lb} \\
&= 0.11 \text{ tons-VOC/year} \\
\end{align*}\]

Cost Effectiveness = $22,820/\text{year} \div 0.11 \text{ tons-VOC/year} \\
= $207,455/\text{ton-VOC}

The analysis demonstrates that the annualized purchase cost of the required condenser alone results in a cost effectiveness which exceeds the District's Guideline of $17,500/ton-VOC.

Step 5 - Select BACT

All identified feasible options with control efficiencies higher than the option proposed by the facility have been shown to not be cost effective. The facility has proposed Option 1, insulated tank, pressure/vacuum valve set within 10% of the maximum allowable working pressure of the tank, "gas tight" tank operation. These BACT requirements will be placed on the ATC as enforceable conditions.
Appendix C

Compliance Certification
San Joaquin Valley
Unified Air Pollution Control District

TITLE V MODIFICATION - COMPLIANCE CERTIFICATION FORM

I. TYPE OF PERMIT ACTION (Check appropriate box)

[X] Federal Major Permit MODIFICATION [] ADMINISTRATIVE AMENDMENT
[] MINOR PERMIT MODIFICATION

COMPANY NAME: E&J Gallo Winery - Livingston
FACILITY ID N#1237

1. Type of Organization: [x] Corporation []sole Ownership [] Government [] Partnership [] Utility

2. Owner's Name: E&J Gallo Winery-Livingston

3. Agent to the Owner: Mr. Dan Martin

II. COMPLIANCE CERTIFICATION (Read each statement carefully and initial all circles for confirmation):

Based on information and belief formed after reasonable inquiry, the equipment identified in this application will continue to comply with the applicable federal requirement(s).

Based on information and belief formed after reasonable inquiry, the equipment identified in this application will comply with applicable federal requirement(s) that will become effective during the permit term, on a timely basis.

Corrected information will be provided to the District when I become aware that incorrect or incomplete information has been submitted.

Based on information and belief formed after reasonable inquiry, information and statements in the submitted application package, including all accompanying reports, and required certifications are true accurate and complete.

I declare, under penalty of perjury under the laws of the state of California, that the forgoing is correct and true:

Signature of Responsible Official

Mr. Dan Martin

Name of Responsible Official (please print)

Plant Manager- Livingston Winery

Title of Responsible Official (please print)

12/01/14

Date

Mailing Address: Central Regional Office • 1990 E. Gettysburg Avenue • Fresno, California 93726-0244 • (559) 230-5900 • FAX (559) 230-6061

TVFORM-009
Appendix D

Quarterly Net Emissions Change (QNEC)
Quarterly Net Emissions Change (QNEC)

The Quarterly Net Emissions Change is used to complete the emission profile screen for the District’s PAS database. The QNEC shall be calculated as follows:

\[
\text{QNEC} = \text{PE}_2 - \text{PE}_1, \quad \text{where:}
\]

- \(\text{QNEC}\) = Quarterly Net Emissions Change for each emissions unit, lb/qtr.
- \(\text{PE}_2\) = Post Project Potential to Emit for each emissions unit, lb/qtr.
- \(\text{PE}_1\) = Pre-Project Potential to Emit for each emissions unit, lb/qtr.

Using the values in Sections VII.C.2 and VII.C.6 in the evaluation above, quarterly \(\text{PE}_2\) and quarterly \(\text{PE}_1\) can be calculated as follows:

\[
\begin{align*}
\text{PE}_{2\text{quarterly}} &= \frac{\text{PE}_{2\text{annual}}}{4 \text{ quarters/year}} \\
&= \frac{83 \text{ lb/year}}{4 \text{ qtr/year}} \\
&= 20.75 \text{ lb-VOC/qtr}
\end{align*}
\]

\[
\begin{align*}
\text{PE}_{1\text{quarterly}} &= \frac{\text{PE}_{1\text{annual}}}{4 \text{ quarters/year}} \\
&= \frac{0 \text{ lb/year}}{4 \text{ qtr/year}} \\
&= 0 \text{ lb-VOC/qtr}
\end{align*}
\]

<table>
<thead>
<tr>
<th>Quarterly NEC [QNEC] for N-1237-776-0 and -777-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE2 (lb/qtr)</td>
</tr>
<tr>
<td>VOC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quarterly NEC [QNEC] for N-1237-778-0 through -780-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE2 (lb/qtr)</td>
</tr>
<tr>
<td>VOC</td>
</tr>
</tbody>
</table>
Appendix E

Draft ATCs
San Joaquin Valley
Air Pollution Control District

AUTHORITY TO CONSTRUCT

PERMIT NO: N-1237-776-0

LEGAL OWNER OR OPERATOR: E & J GALLO WINERY
MAILING ADDRESS: ATTN: EHS MANAGER
18000 W RIVER RD
LIVINGSTON, CA 95334

LOCATION:
18000 W RIVER RD
LIVINGSTON, CA 95334

EQUIPMENT DESCRIPTION:
6,000 GALLON INSULATED STAINLESS STEEL WINE AND DISTILLED SPIRITS STORAGE TANK (TANK D601) WITH
PRESSURE/VACUUM VALVE AND INSULATION, OR EQUIVALENT

CONDITIONS

1. The facility shall submit an application to modify the Title V permit in accordance with the timeframes and
 procedures of District Rule 2520. [District Rule 2520] Federally Enforceable Through Title V Permit

2. Prior to operating equipment under this Authority to Construct, permittee shall surrender VOC emission reduction
 credits for the following quantity of emissions: 1st quarter - 20 lb, 2nd quarter - 21 lb, 3rd quarter - 21 lb, and fourth
 quarter - 21 lb. Offsets shall be provided at the applicable offset ratio specified in Table 4-2 of Rule 2201 (as amended
 04/21/11). [District Rule 2201]

3. ERC Certificate Numbers S-4260-1, C-1229-1, S-4354-1, S-4126-1, S-4381-1, S-4306-1, S-4414-1 and/or N-002-1(or
 a certificate split from these certificates) shall be used to supply the required offsets, unless a revised offsetting
 proposal is received and approved by the District, upon which this Authority to Construct shall be reissued,
 administratively specifying the new offsetting proposal. Original public noticing requirements, if any, shall be
 duplicated prior to reissuance of this Authority to Construct. [District Rule 2201]

4. The nominal tank dimensions are 9.00 feet in diameter and 12 feet in height with a proposed volume of 6,000 gallons.
 The permittee shall submit to the District the gauge volume of the tank within 30 days of the actual tank capacity
 measurement. [District Rule 2201]

5. No air contaminant shall be released into the atmosphere which causes a public nuisance. [District Rule 4102]

CONDITIONS CONTINUE ON NEXT PAGE

YOU MUST NOTIFY THE DISTRICT COMPLIANCE DIVISION AT (209) 557-6400 WHEN CONSTRUCTION IS COMPLETED AND PRIOR TO
OPERATING THE EQUIPMENT OR MODIFICATIONS AUTHORIZED BY THIS AUTHORITY TO CONSTRUCT. This is NOT a PERMIT TO OPERATE.
Approval or denial of a PERMIT TO OPERATE will be made after an inspection to verify that the equipment has been constructed in accordance with the
approved plans, specifications and conditions of this Authority to Construct, and to determine if the equipment can be operated in compliance with all
Rules and Regulations of the San Joaquin Valley Unified Air Pollution Control District. Unless construction has commenced pursuant to Rule 2050, this
Authority to Construct shall expire and application shall be cancelled two years from the date of issuance. The applicant is responsible for complying with
all laws, ordinances and regulations of all other governmental agencies which may pertain to the above equipment.

Seyed Sadredin, Executive Director of APCO

Arnaud Marjolle, Director of Permit Services
6. This tank shall be equipped with and operated with a pressure-vacuum relief valve, which shall operate within 10% of the maximum allowable working pressure of the tank, operate in accordance with the manufacturer's instructions, and be permanently labeled with the operating pressure settings. [District Rules 2201 and 4694]

7. The pressure-vacuum relief valve and storage tank shall remain in a gas-tight condition, except when the operating pressure of the tank exceeds the valve set pressure. A gas-tight condition shall be determined by measuring the gas leak in accordance with the procedures in EPA Method 21. [District Rules 2201 and 4694]

8. The temperature of the wine stored in this tank shall be maintained at or below 75 degrees Fahrenheit. The temperature of the stored wine shall be determined and recorded at least once per week. For each batch of wine, the operator shall achieve the storage temperature of 75 degrees Fahrenheit or less within 60 days after completing fermentation, and shall maintain records to show when the required storage temperature of 75 degrees Fahrenheit or less was achieved. [District Rules 2201 and 4694]

9. The ethanol content of wine/spirits stored in this tank shall not exceed 95.0 percent by volume. [District Rule 2201]

10. The maximum wine/spirits storage throughput in this tank shall not exceed 60,000 gallons per day. [District Rule 2201]

11. The maximum wine/spirits storage throughput in this tank, calculated on a twelve month rolling basis, shall not exceed 120,000 gallons per year. [District Rule 2201]

12. The operator shall determine and record, on a weekly basis, the total gallons of wine contained in the tank and the maximum temperature of the stored wine. [District Rule 4694]

13. Daily throughput records, including records of filling and emptying operations, the dates of such operations, a unique identifier for each batch, the volume percent ethanol in the batch, and the volume of wine/spirits transferred, shall be maintained. [District Rules 1070 and 2201]

14. The operator shall maintain records of the calculated 12 month rolling wine ethanol content and storage and fermentation throughput rate (ethanol percentage by volume and gallons per 12 month rolling period, calculated monthly). [District Rule 2201]

15. If the throughput or ethanol content calculated for any rolling 12-month period exceeds the annual throughput or ethanol content limitations of this permit, in a crush season in which the start of the crush season (defined as the day on which the facility's seasonal crushing/fermentation operations commence) occurs less than 365 days after the start of the previous crush season, then no violation of the throughput or ethanol content limits for that rolling 12-month period will be deemed to have occurred so long as the calendar year throughput and ethanol content are below the annual throughput and ethanol content limitations. [District Rule 2201]

16. Records shall be maintained that demonstrate the date of each year's start of crush season. [District Rule 2201]

17. All records shall be retained on-site for a period of at least five years and made available for District inspection upon request. [District Rule 1070]
AUTHORITY TO CONSTRUCT

PERMIT NO: N-1237-777-0

LEGAL OWNER OR OPERATOR: E & J GALLO WINERY
MAILING ADDRESS: ATTN: EHS MANAGER
18000 W RIVER RD
LIVINGSTON, CA 95334

LOCATION: 18000 W RIVER RD
LIVINGSTON, CA 95334

EQUIPMENT DESCRIPTION:
6,000 GALLON INSULATED STAINLESS STEEL WINE AND DISTILLED SPIRITS STORAGE TANK (TANK D602) WITH PRESSURE/VACUUM VALVE AND INSULATION, OR EQUIVALENT

CONDITIONS

1. (1829) The facility shall submit an application to modify the Title V permit in accordance with the timeframes and procedures of District Rule 2520. [District Rule 2520] Federally Enforceable Through Title V Permit

2. Prior to operating equipment under this Authority to Construct, permittee shall surrender VOC emission reduction credits for the following quantity of emissions: 1st quarter - 20 lb, 2nd quarter - 21 lb, 3rd quarter - 21 lb, and fourth quarter - 21 lb. Offsets shall be provided at the applicable offset ratio specified in Table 4-2 of Rule 2201 (as amended 04/21/11). [District Rule 2201]

3. ERC Certificate Numbers S-4260-1, C-1229-I, S-4354-1, S-4126-1, S-4381-1, S-4306-1, S-4414-1 and/or N-002-1(or a certificate split from these certificates) shall be used to supply the required offsets, unless a revised offsetting proposal is received and approved by the District, upon which this Authority to Construct shall be reissued, administratively specifying the new offsetting proposal. Original public noticing requirements, if any, shall be duplicated prior to reissuance of this Authority to Construct. [District Rule 2201]

4. The nominal tank dimensions are 9.00 feet in diameter and 12 feet in height with a proposed volume of 6,000 gallons. The permittee shall submit to the District the gauge volume of the tank within 30 days of the actual tank capacity measurement. [District Rule 2201]

5. (98) No air contaminant shall be released into the atmosphere which causes a public nuisance. [District Rule 4102]

CONDITIONS CONTINUE ON NEXT PAGE

YOU MUST NOTIFY THE DISTRICT COMPLIANCE DIVISION AT (209) 557-6400 WHEN CONSTRUCTION IS COMPLETED AND PRIOR TO OPERATING THE EQUIPMENT OR MODIFICATIONS AUTHORIZED BY THIS AUTHORITY TO CONSTRUCT. THIS IS NOT A PERMIT TO OPERATE. Approval or denial of a PERMIT TO OPERATE will be made after an inspection to verify that the equipment has been constructed in accordance with the approved plans, specifications and conditions of this Authority to Construct, and to determine if the equipment can be operated in compliance with all Rules and Regulations of the San Joaquin Valley Unified Air Pollution Control District. Unless construction has commenced pursuant to Rule 2050, this Authority to Construct shall expire and application shall be cancelled two years from the date of issuance. The applicant is responsible for complying with all laws, ordinances and regulations of all other governmental agencies which may pertain to the above equipment.

Seyed Sadredin, Executive Director APCO

Arnaud Marjolle, Director of Permit Services

N-1237-777-0: Dec 30 2014 7:15AM - GARCIA - Joint Inspection NOT Required

Northern Regional Office • 4800 Enterprise Way • Modesto, CA 95355-8718 • (209) 557-6400 • Fax (209) 557-6475
6. This tank shall be equipped with and operated with a pressure-vacuum relief valve, which shall operate within 10% of the maximum allowable working pressure of the tank, operate in accordance with the manufacturer's instructions, and be permanently labeled with the operating pressure settings. [District Rules 2201 and 4694]

7. The pressure-vacuum relief valve and storage tank shall remain in a gas-tight condition, except when the operating pressure of the tank exceeds the valve set pressure. A gas-tight condition shall be determined by measuring the gas leak in accordance with the procedures in EPA Method 21. [District Rules 2201 and 4694]

8. The temperature of the wine stored in this tank shall be maintained at or below 75 degrees Fahrenheit. The temperature of the stored wine shall be determined and recorded at least once per week. For each batch of wine, the operator shall achieve the storage temperature of 75 degrees Fahrenheit or less within 60 days after completing fermentation, and shall maintain records to show when the required storage temperature of 75 degrees Fahrenheit or less was achieved. [District Rules 2201 and 4694]

9. The ethanol content of wine/spirits stored in this tank shall not exceed 95.0 percent by volume. [District Rule 2201]

10. The maximum wine/spirits storage throughput in this tank shall not exceed 60,000 gallons per day. [District Rule 2201]

11. The maximum wine/spirits storage throughput in this tank, calculated on a twelve month rolling basis, shall not exceed 120,000 gallons per year. [District Rule 2201]

12. The operator shall determine and record, on a weekly basis, the total gallons of wine contained in the tank and the maximum temperature of the stored wine. [District Rule 4694]

13. Daily throughput records, including records of filling and emptying operations, the dates of such operations, a unique identifier for each batch, the volume percent ethanol in the batch, and the volume of wine/spirits transferred, shall be maintained. [District Rules 1070 and 2201]

14. The operator shall maintain records of the calculated 12 month rolling wine ethanol content and storage and fermentation throughput rate (ethanol percentage by volume and gallons per 12 month rolling period, calculated monthly). [District Rule 2201]

15. If the throughput or ethanol content calculated for any rolling 12-month period exceeds the annual throughput or ethanol content limitations of this permit, in a crush season in which the start of the crush season (defined as the day on which the facility's seasonal crushing/fermentation operations commence) occurs less than 365 days after the start of the previous crush season, then no violation of the throughput or ethanol content limits for that rolling 12-month period will be deemed to have occurred so long as the calendar year throughput and ethanol content are below the annual throughput and ethanol content limitations. [District Rule 2201]

16. Records shall be maintained that demonstrate the date of each year's start of crush season. [District Rule 2201]

17. All records shall be retained on-site for a period of at least five years and made available for District inspection upon request. [District Rule 1070]
AUTHORITY TO CONSTRUCT

PERMIT NO: N-1237-778-0
LEGAL OWNER OR OPERATOR: E & J GALLO WINERY
MAILING ADDRESS: ATTN: EHS MANAGER
18000 W RIVER RD
LIVINGSTON, CA 95334
LOCATION: 18000 W RIVER RD
LIVINGSTON, CA 95334

EQUIPMENT DESCRIPTION:
3,500 GALLON INSULATED AND GLYCOL JACKETED STAINLESS STEEL WINE AND DISTILLED SPIRITS STORAGE TANK (TANK D301) WITH PRESSURE/VACUUM VALVE AND INSULATION, OR EQUIVALENT

CONDITIONS

1. (1829) The facility shall submit an application to modify the Title V permit in accordance with the timeframes and procedures of District Rule 2520. [District Rule 2520] Federally Enforceable Through Title V Permit

2. Prior to operating equipment under this Authority to Construct, permittee shall surrender VOC emission reduction credits for the following quantity of emissions: 1st quarter - 13 lb, 2nd quarter - 13 lb, 3rd quarter - 14 lb, and fourth quarter - 14 lb. Offsets shall be provided at the applicable offset ratio specified in Table 4-2 of Rule 2201 (as amended 04/21/11). [District Rule 2201]

3. ERC Certificate Numbers S-4260-1, C-1229-1, S-4354-1, S-4126-1, S-4318-1, S-4306-1, S-4414-1 and/or N-002-1 (or a certificate split from these certificates) shall be used to supply the required offsets, unless a revised offsetting proposal is received and approved by the District, upon which this Authority to Construct shall be reissued, administratively specifying the new offsetting proposal. Original public noticing requirements, if any, shall be duplicated prior to reissuance of this Authority to Construct. [District Rule 2201]

4. The nominal tank dimensions are 7.00 feet in diameter and 12 feet in height with a proposed volume of 3,500 gallons. The permittee shall submit to the District the gauge volume of the tank within 30 days of the actual tank capacity measurement. [District Rule 2201]

5. (98) No air contaminant shall be released into the atmosphere which causes a public nuisance. [District Rule 4102]

CONDITIONS CONTINUE ON NEXT PAGE

YOU MUST NOTIFY THE DISTRICT COMPLIANCE DIVISION AT (209) 557-6400 WHEN CONSTRUCTION IS COMPLETED AND PRIOR TO OPERATING THE EQUIPMENT OR MODIFICATIONS AUTHORIZED BY THIS AUTHORITY TO CONSTRUCT. This is NOT a PERMIT TO OPERATE. Approval or denial of a PERMIT TO OPERATE will be made after an inspection to verify that the equipment has been constructed in accordance with the approved plans, specifications and conditions of this Authority to Construct, and to determine if the equipment can be operated in compliance with all Rules and Regulations of the San Joaquin Valley Unified Air Pollution Control District. Unless construction has commenced pursuant to Rule 2050, this Authority to Construct shall expire and application shall be cancelled two years from the date of issuance. The applicant is responsible for complying with all laws, ordinances and regulations of all other governmental agencies which may pertain to the above equipment.

Seyed Sadredin, Executive Director, APCO

Arnaud Marjollet, Director of Permit Services
N-1237-778-0 Dec 30 2014 1:17AM - GARCIUJ: Joint Inspection NOT Requested

Northern Regional Office • 4800 Enterprise Way • Modesto, CA 95356-8718 • (209) 557-6400 • Fax (209) 557-6475
6. This tank shall be equipped with and operated with a pressure-vacuum relief valve, which shall operate within 10% of the maximum allowable working pressure of the tank, operate in accordance with the manufacturer's instructions, and be permanently labeled with the operating pressure settings. [District Rules 2201 and 4694]

7. The pressure-vacuum relief valve and storage tank shall remain in a gas-tight condition, except when the operating pressure of the tank exceeds the valve set pressure. A gas-tight condition shall be determined by measuring the gas leak in accordance with the procedures in EPA Method 21. [District Rules 2201 and 4694]

8. The temperature of the wine stored in this tank shall be maintained at or below 75 degrees Fahrenheit. The temperature of the stored wine shall be determined and recorded at least once per week. For each batch of wine, the operator shall achieve the storage temperature of 75 degrees Fahrenheit or less within 60 days after completing fermentation, and shall maintain records to show when the required storage temperature of 75 degrees Fahrenheit or less was achieved. [District Rules 2201 and 4694]

9. The ethanol content of wine/spirits stored in this tank shall not exceed 95.0 percent by volume. [District Rule 2201]

10. The maximum wine/spirits storage throughput in this tank shall not exceed 35,000 gallons per day. [District Rule 2201]

11. The maximum wine/spirits storage throughput in this tank, calculated on a twelve month rolling basis, shall not exceed 78,000 gallons per year. [District Rule 2201]

12. The operator shall determine and record, on a weekly basis, the total gallons of wine contained in the tank and the maximum temperature of the stored wine. [District Rule 4694]

13. Daily throughput records, including records of filling and emptying operations, the dates of such operations, a unique identifier for each batch, the volume percent ethanol in the batch, and the volume of wine/spirits transferred, shall be maintained. [District Rules 1070 and 2201]

14. The operator shall maintain records of the calculated 12 month rolling wine ethanol content and storage and fermentation throughput rate (ethanol percentage by volume and gallons per 12 month rolling period, calculated monthly). [District Rule 2201]

15. If the throughput or ethanol content calculated for any rolling 12-month period exceeds the annual throughput or ethanol content limitations of this permit, in a crush season in which the start of the crush season (defined as the day on which the facility's seasonal crushing/fermentation operations commence) occurs less than 365 days after the start of the previous crush season, then no violation of the throughput or ethanol content limits for that rolling 12-month period will be deemed to have occurred so long as the calendar year throughput and ethanol content are below the annual throughput and ethanol content limitations. [District Rule 2201]

16. Records shall be maintained that demonstrate the date of each year's start of crush season. [District Rule 2201]

17. All records shall be retained on-site for a period of at least five years and made available for District inspection upon request. [District Rule 1070]
San Joaquin Valley
Air Pollution Control District

AUTHORITY TO CONSTRUCT

PERMIT NO: N-1237-779-0

LEGAL OWNER OR OPERATOR: E & J GALLO WINERY
MAILING ADDRESS: ATTN: EHS MANAGER
18000 W RIVER RD
LIVINGSTON, CA 95334

LOCATION:
18000 W RIVER RD
LIVINGSTON, CA 95334

EQUIPMENT DESCRIPTION:
3,500 GALLON INSULATED AND GLYCOL JACKETED STAINLESS STEEL WINE AND DISTILLED SPIRITS STORAGE TANK (TANK D302) WITH PRESSURE/VACUUM VALVE AND INSULATION, OR EQUIVALENT

CONDITIONS

1. (1829) The facility shall submit an application to modify the Title V permit in accordance with the timeframes and procedures of District Rule 2520. [District Rule 2520] Federally Enforceable Through Title V Permit

2. Prior to operating equipment under this Authority to Construct, permittee shall surrender VOC emission reduction credits for the following quantity of emissions: 1st quarter - 13 lb, 2nd quarter - 13 lb, 3rd quarter - 14 lb, and fourth quarter - 14 lb. Offsets shall be provided at the applicable offset ratio specified in Table 4-2 of Rule 2201 (as amended 04/21/11). [District Rule 2201]

3. ERC Certificate Numbers S-4260-1, C-1229-I, S-4354-1, S-4126-1, S-4381-1, S-4306-1, S-4414-1 and/or N-002-1(or a certificate split from these certificates) shall be used to supply the required offsets, unless a revised offsetting proposal is received and approved by the District, upon which this Authority to Construct shall be reissued, administratively specifying the new offsetting proposal. Original public noticing requirements, if any, shall be duplicated prior to reissuance of this Authority to Construct. [District Rule 2201]

4. The nominal tank dimensions are 7.00 feet in diameter and 12 feet in height with a proposed volume of 3,500 gallons. The permittee shall submit to the District the gauge volume of the tank within 30 days of the actual tank capacity measurement. [District Rule 2201]

5. (98) No air contaminant shall be released into the atmosphere which causes a public nuisance. [District Rule 4102]

 CONDITIONS CONTINUE ON NEXT PAGE

YOU MUST NOTIFY THE DISTRICT COMPLIANCE DIVISION AT (209) 557-6400 WHEN CONSTRUCTION IS COMPLETED AND PRIOR TO OPERATING THE EQUIPMENT OR MODIFICATIONS AUTHORIZED BY THIS AUTHORITY TO CONSTRUCT. This is NOT a PERMIT TO OPERATE. Approval or denial of a PERMIT TO OPERATE will be made after an inspection to verify that the equipment has been constructed in accordance with the approved plans, specifications and conditions of this Authority to Construct, and to determine if the equipment can be operated in compliance with all Rules and Regulations of the San Joaquin Valley Unified Air Pollution Control District. Unless construction has commenced pursuant to Rule 2050, this Authority to Construct shall expire and application shall be cancelled two years from the date of issuance. The applicant is responsible for complying with all laws, ordinances and regulations of all other governmental agencies which may pertain to the above equipment.

Seyed Sadredin, Executive Director APCO
6. This tank shall be equipped with and operated with a pressure-vacuum relief valve, which shall operate within 10% of the maximum allowable working pressure of the tank, operate in accordance with the manufacturer's instructions, and be permanently labeled with the operating pressure settings. [District Rules 2201 and 4694]

7. The pressure-vacuum relief valve and storage tank shall remain in a gas-tight condition, except when the operating pressure of the tank exceeds the valve set pressure. A gas-tight condition shall be determined by measuring the gas leak in accordance with the procedures in EPA Method 21. [District Rules 2201 and 4694]

8. The temperature of the wine stored in this tank shall be maintained at or below 75 degrees Fahrenheit. The temperature of the stored wine shall be determined and recorded at least once per week. For each batch of wine, the operator shall achieve the storage temperature of 75 degrees Fahrenheit or less within 60 days after completing fermentation, and shall maintain records to show when the required storage temperature of 75 degrees Fahrenheit or less was achieved. [District Rules 2201 and 4694]

9. The ethanol content of wine/spirits stored in this tank shall not exceed 95.0 percent by volume. [District Rule 2201]

10. The maximum wine/spirits storage throughput in this tank shall not exceed 35,000 gallons per day. [District Rule 2201]

11. The maximum wine/spirits storage throughput in this tank, calculated on a twelve month rolling basis, shall not exceed 78,000 gallons per year. [District Rule 2201]

12. The operator shall determine and record, on a weekly basis, the total gallons of wine contained in the tank and the maximum temperature of the stored wine. [District Rule 4694]

13. Daily throughput records, including records of filling and emptying operations, the dates of such operations, a unique identifier for each batch, the volume percent ethanol in the batch, and the volume of wine/spirits transferred, shall be maintained. [District Rules 1070 and 2201]

14. The operator shall maintain records of the calculated 12 month rolling wine ethanol content and storage and fermentation throughput rate (ethanol percentage by volume and gallons per 12 month rolling period, calculated monthly). [District Rule 2201]

15. If the throughput or ethanol content calculated for any rolling 12-month period exceeds the annual throughput or ethanol content limitations of this permit, in a crush season in which the start of the crush season (defined as the day on which the facility's seasonal crushing/fermentation operations commence) occurs less than 365 days after the start of the previous crush season, then no violation of the throughput or ethanol content limits for that rolling 12-month period will be deemed to have occurred so long as the calendar year throughput and ethanol content are below the annual throughput and ethanol content limitations. [District Rule 2201]

16. Records shall be maintained that demonstrate the date of each year's start of crush season. [District Rule 2201]

17. All records shall be retained on-site for a period of at least five years and made available for District inspection upon request. [District Rule 1070]
San Joaquin Valley
Air Pollution Control District

AUTHORITY TO CONSTRUCT

PERMIT NO: N-1237-780-0

LEGAL OWNER OR OPERATOR: E & J GALLO WINERY
MAILING ADDRESS: ATTN: EHS MANAGER
18000 W RIVER RD
LIVINGSTON, CA 95334

LOCATION: 18000 W RIVER RD
LIVINGSTON, CA 95334

EQUIPMENT DESCRIPTION:
3,500 GALLON INSULATED AND GLYCOL JACKETED STAINLESS STEEL WINE AND DISTILLED SPIRITS STORAGE TANK (TANK D303) WITH PRESSURE/VACUUM VALVE AND INSULATION, OR EQUIVALENT

CONDITIONS

1. (1829) The facility shall submit an application to modify the Title V permit in accordance with the timeframes and procedures of District Rule 2520. [District Rule 2520] Federally Enforceable Through Title V Permit

2. Prior to operating equipment under this Authority to Construct, permittee shall surrender VOC emission reduction credits for the following quantity of emissions: 1st quarter - 13 lb, 2nd quarter - 13 lb, 3rd quarter - 14 lb, and fourth quarter - 14 lb. Offsets shall be provided at the applicable offset ratio specified in Table 4-2 of Rule 2201 (as amended 04/21/11). [District Rule 2201]

3. ERC Certificate Numbers S-4260-I, C-1229-I, S-4354-I, S-4126-I, S-4306-I, S-4414-I and/or N-002-I (or a certificate split from these certificates) shall be used to supply the required offsets, unless a revised offsetting proposal is received and approved by the District, upon which this Authority to Construct shall be reissued, administratively specifying the new offsetting proposal. Original public noticing requirements, if any, shall be duplicated prior to reissuance of this Authority to Construct. [District Rule 2201]

4. The nominal tank dimensions are 7.00 feet in diameter and 12 feet in height with a proposed volume of 3,500 gallons. The permittee shall submit to the District the gauge volume of the tank within 30 days of the actual tank capacity measurement. [District Rule 2201]

5. (98) No air contaminant shall be released into the atmosphere which causes a public nuisance. [District Rule 4102]

CONDITIONS CONTINUE ON NEXT PAGE

YOU MUST NOTIFY THE DISTRICT COMPLIANCE DIVISION AT (209) 557-6400 WHEN CONSTRUCTION IS COMPLETED AND PRIOR TO OPERATING THE EQUIPMENT OR MODIFICATIONS AUTHORIZED BY THIS AUTHORITY TO CONSTRUCT. This is NOT a PERMIT TO OPERATE. Approval or denial of a PERMIT TO OPERATE will be made after an inspection to verify that the equipment has been constructed in accordance with the approved plans, specifications and conditions of this Authority to Construct, and to determine if the equipment can be operated in compliance with all Rules and Regulations of the San Joaquin Valley Unified Air Pollution Control District. Unless construction has commenced pursuant to Rule 2050, this Authority to Construct shall expire and application shall be cancelled two years from the date of issuance. The applicant is responsible for complying with all laws, ordinances and regulations of all other governmental agencies which may pertain to the above equipment.

Seyed Sadredin, Executive Director APCO

Arnaud Marjollet, Director of Permit Services
N-1237-780-0 - Dec 30 2014 7:17AM - GARCIA: Joint Inspection NOT Required
Northern Regional Office • 4800 Enterprise Way • Modesto, CA 95356-8718 • (209) 557-6400 • Fax (209) 557-6475
6. This tank shall be equipped with and operated with a pressure-vacuum relief valve, which shall operate within 10% of the maximum allowable working pressure of the tank, operate in accordance with the manufacturer's instructions, and be permanently labeled with the operating pressure settings. [District Rules 2201 and 4694]

7. The pressure-vacuum relief valve and storage tank shall remain in a gas-tight condition, except when the operating pressure of the tank exceeds the valve set pressure. A gas-tight condition shall be determined by measuring the gas leak in accordance with the procedures in EPA Method 21. [District Rules 2201 and 4694]

8. The temperature of the wine stored in this tank shall be maintained at or below 75 degrees Fahrenheit. The temperature of the stored wine shall be determined and recorded at least once per week. For each batch of wine, the operator shall achieve the storage temperature of 75 degrees Fahrenheit or less within 60 days after completing fermentation, and shall maintain records to show when the required storage temperature of 75 degrees Fahrenheit or less was achieved. [District Rules 2201 and 4694]

9. The ethanol content of wine/spirits stored in this tank shall not exceed 95.0 percent by volume. [District Rule 2201]

10. The maximum wine/spirits storage throughput in this tank shall not exceed 35,000 gallons per day. [District Rule 2201]

11. The maximum wine/spirits storage throughput in this tank, calculated on a twelve month rolling basis, shall not exceed 78,000 gallons per year. [District Rule 2201]

12. The operator shall determine and record, on a weekly basis, the total gallons of wine contained in the tank and the maximum temperature of the stored wine. [District Rule 4694]

13. Daily throughput records, including records of filling and emptying operations, the dates of such operations, a unique identifier for each batch, the volume percent ethanol in the batch, and the volume of wine/spirits transferred, shall be maintained. [District Rules 1070 and 2201]

14. The operator shall maintain records of the calculated 12 month rolling wine ethanol content and storage and fermentation throughput rate (ethanol percentage by volume and gallons per 12 month rolling period, calculated monthly). [District Rule 2201]

15. If the throughput or ethanol content calculated for any rolling 12-month period exceeds the annual throughput or ethanol content limitations of this permit, in a crush season in which the start of the crush season (defined as the day on which the facility's seasonal crushing/fermentation operations commence) occurs less than 365 days after the start of the previous crush season, then no violation of the throughput or ethanol content limits for that rolling 12-month period will be deemed to have occurred so long as the calendar year throughput and ethanol content are below the annual throughput and ethanol content limitations. [District Rule 2201]

16. Records shall be maintained that demonstrate the date of each year's start of crush season. [District Rule 2201]

17. All records shall be retained on-site for a period of at least five years and made available for District inspection upon request. [District Rule 1070]